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A computationally efficient pseudospectral method is developed for incompress-
ible flow simulations in two-dimensional geometries involving periodicity in one
direction and significant surface deformations. A pseudoconformal mapping is used
to map the flow domain into a rectangle, thereby establishing an orthogonal curvi-
linear coordinate system within which the governing equations are formulated. The
time integration of the spectrally discretized, two-dimensional momentum equations
is performed by a second-order mixed explicit/implicit time integration scheme. The
satisfaction of the continuity equation is obtained through the solution of a Poisson
equation for the pressure and the use of the influence matrix technique. A highly
efficient iterative solver has been developed for the solution of a generalized Stokes
problem at each time step based on a spectrally preconditioned biconjugate gradi-
ent algorithm, which exhibits almost linear scalability, requiring an ofdésg, N
number of operations, wheid is the number of unknowns. Numerical results are
presented for two-dimensional steady, oscillatory, and peristaltic flows within an un-
dulating channel, which agree well with previous results that have appeared in the
literature. © 1998 Academic Press

1. INTRODUCTION

Multidimensional and time-dependent flows within an irregular geometry, fixed but
possibly time-dependent, are encountered in many industrial processes (such as, for
ple, material manufacturing processes) and natural biological systems (such as, for exe
blood flow in arteries). Moreover, free surface flows, where one of the fluid boundarie
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dynamically determined, are additionally important to ocean engineering, naval operatic
geosciencextc The flow problems become even more complicated in the presence
surfactants, the interaction of which with the flow through the modification of the surfa
tension intimately couples the fluid free surface and surfactant concentration [1, 2]. The
fore, it is not surprising that the solution of these problems can only be achieved (excep
rare occasions) numerically. However, the inherent complexity of the governing equati
is such that even a numerical solution, using currently available numerical techniques
in general, very computationally intensive (indeed, prohibitively so when a fully develop
turbulent flow is involved), even when the fluid involved is assumed Newtonian. Thus ari
the realization that further progress can only be achieved through the development of 1
computationally efficient algorithms. The development of such a new numerical algorith
based on spectral methods, and its testing with model flow problems with solid bounda
is the subject of the present paper. Its extension to free surface problems with surfact
will be addressed in a subsequent publication.

Among the numerical methods developed for the solution of multi-dimensional and tin
dependent Newtonian flow problems, spectral methods are distinguished in that they
both very accurate (converging exponentially fast with mesh refinement) and, based or
availability of Fast Fourier Transforms (FFTs), they have the potential for a very efficie
computational implementation (with a workload increasing only mildly faster than linear
O(N log, N), with the number of modes involved) [3, 4]. This combination of high
accuracy with computational efficiency has made spectral methods the methods of ch
within their domain of application. Indeed, most of the standard turbulence direct numeri
simulation data (essentially, homogeneous turbulence [5] and turbulence in a channel
[6]) have been obtained with spectral approximations.

Roughly, the exponential convergence of spectral approximations is guaranteed
smooth solutions which are, in general, anticipated for flows with smooth geometric bou
aries [3, 7]. This places some (but not very severe) restrictions on the utility of spec
methods. However, the other characteristic of the spectral methods, namely their comg
tional efficiency ofO(N log, N), relies critically (so far) on the use of fast Poisson solvers
Unfortunately, these are only available for a very limited number of smooth geometri
such as a channel, pipe, or eccentric cylinders geometry, where the coordinate deper
cies decouple in the Poisson equation [3]. Thus, with the exception of direct numeri
simulation of turbulent flows within simple geometries, current implementations of spe
tral methods do not perform wit (N log, N) efficiency, which makes their application
to large scale flow simulations computationally limited to rather simple flow geometri
and/or flow structures. Indeed, for complicated flow geometries, lower order approximat
techniques (such as finite difference [8], finite elements [9, 10], and, more recently, fir
volume [11, 12]), are in general preferred. Nevertheless, when high accuracy is required
for example, in transition and turbulent flow or in free surface flows involving surfactant
the high accuracy spectral approximation becomes almost a necessity for a successft
merical simulation [8]. This has motivated a considerable amount of work for the extens
of the applicability of these methods to more complex geometries [13-15].

In order to extend the applicability of spectral methods to the solution of flow probler
with irregular boundaries, two approaches have been followed so far. The first involve
mapping of the flow geometry onto a rectangular one, where the spectral approxima
can be implemented directly [13]. An application of this approach for two-dimension
pseudospectral flow calculations in an irregular domain with a non-orthogonal coordin
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system can be found in [16]. The second approach involves the use of macro-elements
respect to which the global geometry is described [14, 15]. The spectral approximatic
then used to approximate the variables within each of these elements, whereas lower-
continuity is imposed on the inter-element boundaries. It should be noted that the mag
of the flow boundary into a rectangular domain is also typically used in conjunction with
second approach when the macro-elements have irregular skeagespectral elements)

[14, 15]. One method of obtaining this mapping is through the solution of a Poisson eque
for the new coordinates in terms of the old ones (orthogonal mapping) which is simila
the pseudoconformal mapping discussed in more detail below but does not make use
special identities that this last one offers.

The major issue that arises with any of the pre-existing spectral techniques is their
cient computational implementation. Although significant strides have been made in
direction, the implementation of either one of the above-mentioned approaches require
solution of sets of linear equations involving full matrices. Both direct or iterative methc
that have been used to achieve that solution have so far failed to demonstrate an opt
O(Nlog, N) efficiency. It is the purpose of the present work to propose an alternat
approach which, by exploiting the special structure of the equations resulting from a p
doconformal mapping of the original (deformed) domain, allows for the use of speci
preconditioned conjugate gradient techniques that, as numerical evidence suggests, s
lead to an optimun® (N log, N) computational efficiency. This method resulted as the ot
growth of a similar approach proposed for the solution of generalized Helmholtz proble
in a previous paper [17].

In general, at the present time, any numerical method developed for the solutio
Newtonian flow problems within deformed boundaries involves a step where the con
tational grid is numerically generated, whether or not the problem has a time depend
and/or a free surface. Fundamental discussions of many grid generation technique
provided in [18, 19], together with applications to various areas involving the numeri
solution of partial differential equations.

Conformal mapping is a strategic method of numerical grid generation which allows f
considerable structure in writing the governing equations in the transformed coordinate
flow problems involving irregular geometric boundaries. This technique takes advantag
the mathematical and computational simplicity of the transformation between the phy:
and computational domain that occurs when the scale factors are equal to each ott
has the advantage that the partial differential equations expressed in that coordinate s
acquire the minimal number of additional terms because the coupling of the two indepen
variables is limited to only lower-order terms, which allows the use of efficient iterati
solution techniques. Furthermore, numerical codes that are very general in their applic
can be written, with all computations done on a fixed rectangular grid in the transforr
computational space regardless of the shape and movement of the physical boundarie
An additional advantage of conformal mapping is that it allows the use of the same effic
routines to solve for the mapping as those which can be used to solve for the viscous
in the flow equations for constant coefficient problems.

Although conformal mappings require the length scales in the different directions tc
correlated in order to allow for a constant ratio of scale factors equal to unity, this prob
can be easily alleviated by constructing orthogonal mappings in which the ratio of s
factors is not unity, but constant throughout the domain [19]. Since these mappings ce
reduced to conformal mappings through a simple rescaling in one direction, they retain |
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of the properties of the conformal mappings and are referred to here and in the follow
aspseudoconformal mappingslere these are exclusively used in favor of the conforme
mapping given the flexibility that they offer in their numerical implementation.

Pseudoconformal mapping has a significant problem in that the dual requirements of
thogonality and the constant ratio of the scale factors are too restrictive. Thus, this map
can only be defined for a specific class of boundary geometries [20]. Although this cl
is very restrictive as far as three-dimensional geometries are concerned, it is only mi
restrictive for two-dimensional ones. Indeed, it allows for arbitrarily deformed (but smoot
two-dimensional geometries that are periodic in one direction [21], and this is exactly
case where we are limiting the applications discussed in the present work. Moreover, s
dependence on a third periodic dimension can also be considered so that most of the |
erties discussed here are also transferred there with minimal changes, the applical
of the present approach appears to be extendible to at least three-dimensional prok
involving surface variations in one of the two periodic dimensions for which several impc
tant applications exist.

The other drawback of pseudoconformal mappings, as explained by Thorepson
[18, 19] and Fornberg [22], is that they are usually ill-conditioned in the sense that sir
changes in the shape of the mapped region can significantly change the position of s
boundary points, and that there is little control over the resulting coordinate syiséem;
the point-wise distribution of computational nodes on the boundaries cannot be speci
and internal elemental structure cannot be controlled. Ryskin and Leal [23] proposed
different methods for the orthogonal mapping: a strong constraint method that was desic
for free-boundary problems in which a distortion function is specé#igdiori, and a weak
constraint method that was designed for fixed-domain problems in which the bound
correspondence is prescribed. Kang and Leal [24] proposed a more developed disto
function for the orthogonal mapping. They solved the Laplace equations for the mapp
with Dirichlet-type boundary conditions [23, 24]. For the orthogonal mapping, Duraiswal
and Prosperetti [25] used the conformal module of the physical domain for the calculat
of distortion functions, which was defined as the ratio of the lengths of two adjacent sit
of a quadrilateral. However, in these works, by utilizing distortion functions they modi
the properties of the mapping which results in the loss of the mathematical simplicity
the resulting equations; this is precisely the feature that we want to exploit here, since
utilized for the development of efficient conjugate gradient preconditioners. Therefore,
orthogonal mapping with constant conformal module is developed here (pseudoconfor
mapping) particularly for the calculation of time-dependent Newtonian flows with a d
formed (and in some cases moving) surface. The high accuracy guaranteed by the spe
solution of the mapping equations whenever the boundary conditions that are appliec
regular is expected to compensate for the ill conditioning of the problem. Indeed, the nun
ical evidence of the model flow problems (as presented in the results section) indicates
an exponential convergence to the solution of the flow problem can be obtained provided
one has a sufficiently accurate solution of the mapping equations, which, for isoparame
methods like the one used here, dictates the lowest bound for the error of the scheme.
this in mind, it is natural to consider using a more refined mesh for the mapping than for
flow equations, which is very simple to apply for fully spectral algorithms, in order to hay
ameans of balancing the accuracy of the scheme with the computational costin a more
ible way. In this paper we did not use such superparametric mappings for the test probl
in order to keep things simple and focus on the fundamental concepts behind the algori
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Nevertheless, a superparametric approach is recommended for “production” runs asso
with relatively large surface deformations. We must also note that a class of problems
are prime candidates to apply a superparametric mapping are free surface flows.

In this work, we have used as a model flow problem the flow of a Newtonian flt
within a sinusoidally undulating channel. This flow is examined under steady and tit
dependent (oscillatory flowrate) conditions corresponding to a fixed solid boundary as
as under moving boundary conditions (pulsating flow), which serves especially well
test case for the applicability of our technique to free surface problems. Many nume
and experimental studies have been undertaken on two-dimensional Newtonian flows v
sinusoidal boundary. Sobey [26] presented numerical solutions of the time-dependent |
through a furrowed channel, for the steady and unsteady cases, using a finite diffel
method. He also investigated the occurrence of separation in oscillatory flow [27],
observed steady and oscillatory flow in arectangular channel [28]. Pozrikidis [29] undert
a study for Stokes flow using the boundary integral method. Nishietakinvestigated the
flow characteristics in a channel with a symmetric, wavy wall for steady and oscillatory flc
through numerical calculations and experiments. The equations expressed in terms «
vorticity and the stream function were solved by the Galerkin finite element method [30—

For moving boundary problems, Burns and Parkes [35], as well as Pozrikidis [36], stu
the peristaltic motion under the Stokes flow approximations. Peristaltic motion is defi
as the propagation of waves along the flexible walls of a channel or tube. Flows drivel
peristaltic motion provide an attractive means of sanitary fluid transport and they are c
used in industrial processes. Takabatake and Ayukawa [37] studied peristaltic flows
channel using a finite difference technigue including the stream function and the vorti
as the unknowns in the Navier—Stokes equations. They observed the flow in moving co
nates, which travel with the same speed as the waves: the fully developed flow was trea
steady because the configuration of the wall appears to be stationary. Kumar and Naidt
studied peristaltic flow in channels with the finite element method and the streamfunct
vorticity formulation. Takabataket al. [39] considered peristaltic flows in tubes using the
same method as in [37]. Peristaltic flow of viscoelastic liquids was considered by Boel
and Friedrich [40] in the moving frame under the Stokes flow approximation. Karageor
and Phillips [41] solved a laminar flow problem in a constricted channel with a conform
Chebyshev collocation method, wherein the flow region is divided into a number of reci
gular subdomains and the governing equations are written in terms of the stream func
For the simulation of unsteady, free-surface flows, Ho and Patera [42] presented a Leg
spectral element method based on the use of arbitrary Lagrangian—Eulerian methoc
representation of moving boundaries and the use of semi-implicit time-stepping procec
to partially decouple the free-surface evolution and the bulk Navier—Stokes equations

In this work we solve for two-dimensional flow problems within a sinusoidally undi
lating channel utilizing a spectral method developed for the numerical simulation of tir
dependent Newtonian flows in a general two-dimensional flow geometry with one peric
direction. The approach followed is based on a fully spectral, spatial representation o
variables, a pseudoconformal mapping of the flow domain into a regular rectangle,
pled to a standard semi-implicit (implicit/explicit) time integration of the resulting (upc
spatial discretization and the application of an influence matrix technique [43, 44]) o
nary differential equations. The influence matrix technique is especially appropriate for
development of the pressure boundary conditions under the incompressibility const
[45, 46]. Except for the mapping implementation, the solution technique follows clos
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the very successful time-splitting scheme originally proposed by Orszag and Kells [6], f
lowed by Moin and Kim [47] and later by others [48-52] in direct numerical simulation c
turbulent flows. The mapping is essential in order to preserve the computational efficie
of the proposed numerical technique, and it can be carried out numerically in a very effici
manner using fast Poisson solvers, since the required equations are separable [3]. How
simply introducing the pseudoconformal mapping is not sufficient to guarantee an effici
spectral solution to the flow problem, since the decomposition of the flow equations at e
time step results in nonseparable elliptic equations to which a fast spectral solver is
directly applicable. In order for the implementation of the method discussed in this work
fulfill all of the abovementioned requirements for accuracy and efficiency, the developm
of an appropriate iterative solver satisfying these requirements is also necessary.

There has been considerable work related to the solution of nonseparable elliptic equa
in recent years. The general trend has been to focus on iterative solvers for use in d
numerical simulations of flow problems in complex geometries. After Orszag's influent
paper [13], considerable attention has been devoted to the implementation of preconditic
iterative methods. Various iterative methods have been proposed as a basis for spe
algorithms, such as minimal residual methods [53], conjugate gradient methods [13],
multigrid methods [54, 55]. The proposed preconditioners have varied from incorhjlete
factorizations to spectral solutions of similar/related problems. A general overview exist:
[3] and a brief summary of more recent papers in [17]. Recently, Hesthaven demonstr:
that by using spectral preconditioners it is possible to effectively precondition the advect
and diffusive operators [56]. For the purposes of this work, an efficient pseudospectral so
for such equations, which is based on a spectrally preconditioned biconjugate grad
algorithm, has been developed recently by the authors [17] and is implemented here.
implementation of the solver involves the application of the influence matrix method [43, £
for the satisfaction of the divergence free condition. The influence matrix method is appl
within the preconditioner in a manner that does not affect the efficiency of the method
it is demonstrated in the following sections.

In summary, we have developed a new numerical technique which couples the accu
and efficiency of spectral methods with the advantages of conformal mapping betw
the physical and computational domains. The pseudoconformal mapping and its nume
implementation is discussed in Section 2. The numerical algorithm is presented afterw:
in Section 3. In order to validate the algorithm, as far as the direct numerical simulat
of solid boundary problems is concerned, steady and pulsating flows are investigate
an undulating channel geometry, and peristaltic flow is considered in time-depend
deforming-boundary geometry in both laboratory and wave frames. The results from |
numerical study are presented in Section 4 along with the relevant discussion. This pro
allows for a systematic increase of the problem difficulty with the ultimate (realizabl
goal of developing a highly accurate and equally efficient numerical method for the sc
tion of time-dependent, free-surface flows with surfactants, which is to be discussed
forthcoming paper. Finally, the conclusions follow in Section 5.

2. PSEUDOCONFORMAL MAPPING WITH PSEUDOSPECTRAL IMPLEMENTATION

The physical domain under consideration involves one periodic dire¢tipand one
non-periodiqy), with the lower boundary = 0 corresponding for simplicity to a symmetry
line. Therefore, the flow domain is defined through the specification of the upper bound
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This is assumed to be provided through a functién, t), which is either known explicitly
orimplicitly through a relationship between the time-derivatd®gdt anddy/dt. The first
case is treated in Subsections 2.1-2.3 and the second, of relevance to free-surface pro
in Subsection 2.4.

2.1. Governing Equations for the x, y Coordinates

An orthogonal mapping from the computational dom&in ), to the physical domain,
(X, y), is obtained by solving two Laplace equations in a rectangular don@is, L,
0— H) for thex =x(&, n) andy = y(&, n) coordinates,

1 d ([ hs dx d (h, dx
X %hnhé<m3€)+3n(%3n)] ’ @)

1 [d [hsay a (h,ady
VZy = — (22 )+ (22| =0 2
1= a2 (o) * o e = @

ax\? ay 2 ax\ 2 ay 2
h2= (= = and hi=(_—- = 3
f <as> *’(as> ” (3n) +'(an> ©
are the scale factors. Numerically, these equations are solved spectrally within a uni

grid along the periodic&-coordinate) direction and a Gauss—Lobatto grid along the nc
periodic ¢-coordinate) direction,

where

iL H jm . .
%_'ZI\I_’ nJZZ[CO%I\Iy>+1:|(|:O,1,.,Ns,lzo,l,.,Nn), (4)

whereL, H are characterictic lengths along then-directions, respectively, an;, N,
are the numbers of nodes in the designated directions.

Equations (1) and (2) are most easily solved numerically when an additional const
is specified for the conformal modullk], defined as the squared ratio of the scale factor

he \
M= o = constant (5)

n

Thus the conformal module has a clear geometrical significance: it specifies the rat
the sides of a small area in the physical plane which is an image of a small rectang
the computational plane. When the constant in (5) is unity, the mapping is conformal.
orthogonal system with non-uriid is not conformal by definition, but does trivially corre-
spond to a conformal system through a linear transformation of either one of the curvilir
coordinates which incorporates the constant value of the cell aspect ratio [19]. Hencef
we shall call such a mappirmgseudoconformakorresponding through a suitable modifi-
cation of Egs. (1), (2) based on the constraint (5) to the following pseudoconformal sys
of equations

9%x  9%x 92 92
IXL %0 and MIX 4V _o )
02 9n? 92 9n?
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subject to appropriate boundary conditions. A crucial step allowing for a direct spect
numerical calculation is that tieandn variables separate in (6), which makes possible th
use of efficient Poisson solvers for the solution of the conformal system.

Two boundary conditions on the top surface are needed in order to find a solution
this elliptic system. One condition comes from the boundary shape and the other condi
comes from the orthogonality condition. As mentioned in the Introduction, we illustrate t
application of the method to three different Newtonian flows in this paper. The first tw
flow in an undulating channel with a constant and time-periodic flow rate, are simpler ca
because they involve a stationary boundary. Thus, the mapping is time-independent
may be solved a single time, outside of the main solution algorithm for the flow equatio
The other flow (peristaltic), involves time-dependent mapping which must be incorpora
into the solution algorithm and determined at each time step. The techniques employe
obtaining the mapping in each case are outlined in the following subsections.

2.2. Boundary Conditions for a Prescribed Upper Surface

When the upper surface is specifiegriori as a given function ok and the timet,

y= f(x,1), (7)

such arelationship can be directly used to specify one of the two needed boundary condi
for the upper surface, = 1. For example, for a stationary undulating channel,

f(X,1) = Ha[1 — @ cog2mx/L)], (8)

whereHy (=H) is the average half-width of an equivalent straight channelcaiglthe
dimensionless amplitude of the undulation. The additional boundary condition is obtair
naturally from the orthogonality condition which ensures that the coordinate lines are
pendicular at each node. This orthogonality is guaranteed by the relationship

(ae) (&) + () () = 0

This relationship in conjunction with Eq. (8) simplifies to a linear condition

X af 9
XD ey =1 (10)
an ax an
Similar conditions could, in general, be specified for the bottom boungay). Alterna-
tively, for simplicity, we can use symmetry conditions there:

8—X:0 and y=0atny=0. (1n

an

The distribution of the coordinates on the top surface is thus unspecified, so that these ve
are determined by the mapping itself. Periodic conditions are used aloggdinection,
for xp = x — & andy. All problems under consideration in this work involved channel flow
with a periodic flow direction, as dictated by the periodic nature of the boundary shape
symmetry conditions at the centerline. However, the approach is general enough to er
the relaxation of these assumptions in a straightforward fashion.
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2.3. Efficient Pseudospectral Solution of the X, y Coordinate Mapping

Based on the periodicity requirements, the spectral simulation uses a mixed Cheby:
Fourier spectral approximation: a Fourier series expansion along the periodic diregtio
whichis mapped§) is combined with a Chebyshev series expansion along the non-peric
direction fy, mapped toj). This corresponds to any given periodic variagle= Xp(=Xx —

£).Y,

Ne/2-1 N,

o 2
s(E, n) = Z Z:Sj.kel(J/'\‘s)(Zﬂ/Ls)E'rk<L_77 _ 1)’ (12)

j=—N:/2 k=0 n

where thes;, are the spectral coefficient$, denotes théth Chebyshev function, and
Ne, N, are the number of modes present in ¢handy directions, respectively, with ¢
andL, representing the corresponding length scales. The total number of spectral m
(unknowns) per variabléNy, is equal toNg (N,, + 1). As usual, the transition between the
physical and spectral domain can be performed efficiently using fast Fourier transfc
(FFTs) requiringO(Ny log, Nt) operations [3].

Given the availability of efficient direct Poisson solvers for Egs. (6), the major difficu
for the solution of the mapping coordinatesy arises from the coupling involved in the
specifications of the boundary conditions (8), (10) and the nonlinear constraint (5). Th
handled in a computationally efficient way according to the following scheme.

Equations (6) are solved iteratively using two nested iteration loops involving an exf
sion in terms of basis functiorig, ¥; of the form

N; N;
Xp = Z fi Xi and y = Z Ji fli. (13)
i=1 i=1
The outer iteration begins by specifying an initial guess\rafter which the equations
%% 9°% 3%y 9%y
—+—=0 and M— +— =0, 14
0&2 + an? 0&2 + an? (14)

are solved for each one of the basis functi&nsy;, subject to boundary conditions

%
Tk_0 aty=0 (15)
an
and
d%i
Xk s atn=1, (16)
an

for Xix, whereXiy represents thkth Fourier transform, anély is the Kronecker delta, and
V=0 atn=0 17)
and

Vik=20k atp=1 (18)
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for §,.. where§;, represents th&th Fourier transform. Note that with those boundary
conditions the physical mapping of the coefficiefitendg; appearing in the expressions
indicated in Eq. (13) becomes

ok _ fk and %k =0k (19)
on

The above statement, in conjunction with the boundary conditions (7) and (10), allows
an efficient iterative algorithm for the specification pfandg; as follows: an initial guess
is provided (typically from a previous solution) which is then used in Eq. (13) to evalua
the right-hand sides in Egs. (7) and (10), which are then used in conjunction with Eqg. (
to provide new values for the coefficiergg and fx. The whole process is then repeated
until the coefficients do not change within machine accuracy. The converged valges o
and fy are then used to evaluate new estimatedioevhich then are used to generate new
basis functions, ¥, continuing this outer iteration until does not change, again within
machine accuracy.

Each iteration of the inner loop, as involving only the valuexo§ on the boundary,
is very fast. In addition, at the initial stages of the outer iteration, convergence needs c
to be satisfied partially (given the uncertaintyM) and a criterion equal to 18 times
the previous value in the changeMh, AM, is adequate. The major workload is associatel
with the solution of the basis functions and the evaluatiol bf the orderO(N log, N)),
which, however, does not spend too much time since itis found that in the cases investig
in this work, the convergence of the outer loop is very fast, typically requiring no more th
10 to 20 iterations. By using this scheme with the two nested iterations, it was calcula
that the mapping subroutine was 25 times more efficient than if a direct linear iterati
scheme were used. Finally, we must note that in order to have an adequate mesh resol
more Fourier than Chebyshev modes are typically required. For example, in order to r
a wavy channel where the aspect ratio of its length to its half-widgt,y, is equal to
3 and for which the dimensionless amplitude of the undulatigris 0.45, one requires
more than 128 Fourier modes in order to see a decrease of 8 to 10 orders in the magn
of the spectral coefficients, with increasing wave number along the Fourier direction. T
required Chebyshev coefficients are less than 65. This is usually observed when the may
approaches the limit of becoming singular. Since the singularities appear first on the may
boundaries, the rate of convergence of the Fourier approximation is more sensitive and <
decreasing before that of the Chebyshev approximation.

Figure 1 illustrates a typical case of mapping from the non-rectangular region to a sim
rectangular region for the stationary solid boundary problem. The coordinate lines t
to be more closely spaced near concave segments and more widely spaced near c
segments.

2.4. Efficient Solution for the Time Derivatives of the Coordinates

When the location of the upper surface is no longer knayeriori, but instead boundary
conditions are known which constrain the time derivatives of the mapping of the flc
boundary, the mapping coordinates- x(&, n,t) andy =y(§, n, t) are solved indirectly
through a numerical integration of their time derivatives. This requires evaluation of t
time derivatives ok, y which is achieved by using the same nested iteration algorithm :
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FIG. 1. Mapping of the physical/flow domain to the computational domain.
described for the time-independent mapping. This time, though, one solves the equat
8% [ ax 8% [ ax aM 92x
M=+ ) =5
9E2 \ ot an? \ ot ot 9&2
and (20)
3% (9 2 M 92
w2 (Y, Y (BY) _ oMy
9g2 \ ot an? \ ot ot 9&2

for boundary conditions which are derivatives of Egs. (8) and (10). Specifically, the col
tions imposed are

9 af (x, t 3 /0 3 /af &
Oy _AKD g L (2X) 0 (0 Dy atn =1 (21)
ot at an \ ot at \ ax an
and
) 9
(Yo and D —oatn=o (22)
an \ at ot

The only change compared to the algorithm that calculates the values of yi@oor-
dinate mapping is that there is an additional iteration loop that corrects for the value of
termdM/at which is unknown and must be solved for as well. Also, the right-hand sic
in Egs. (20) are calculated iteratively based on the previous guesses as well. Initial gus
for succeeding time steps are evaluated using first-order continuation.
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This approach was tested based on a second order time integration method for the
values ofx, yinthe case of an undulating channel with a moving wall (at a constant velocit
against the solution of the same problem in a translating frame at the boundary’s velo
In this frame of reference the solid boundary is stationary. The results show difference
the same order as the error of the time integration, which implies that the calculation of
time derivatives has a significantly smaller error.

3. EFFICIENT SPECTRAL NUMERICAL SIMULATION

3.1. Mathematical Model Equations

The objective of this paper is to present an efficient spectral numerical method for
solution of time-dependent flows in moderately deformed geometries. We illustrate its
plication in smoothly deformed channels. Concisely, the method involves the incorporat
of a traditional time-splitting implicit/explicit integration of the full Navier—Stokes equatiol
in time, implemented in an orthogonal (pseudoconformal) curvilinear coordinate syst
and utilizing an efficient elliptic solver to integrate the implicit Poisson/Helmholtz prok
lems which arise at each time step. Thus, the time step solution and computational dor
mapping algorithms are closely coupled.

The starting point is the rotational form of the Navier—Stokes equation for incompressi
flow and the continuity equation, which in dimensionless form are

av 1
Nl = —Vp+ V2 2
at—l—wxv p+Re v, (23)

V.v=0, (24)

wherev is the dimensionless velocity;is a dimensionless effective pressure incorporating
the kinetic energy contributiop= p + @ wherepis the dimensionless pressuseis the
dimensionless vorticity vector fiel®Reis the Reynolds number, defined asRes=UH /v,
wherev is the kinematic viscosity of the fluid, attl H the velocity and length scales. Note
thatin Eq. (23) pis non-dimensionalized with respect to the inertial sp&lé. The velocity
scale is different in the three flows presented in this paper and its value will be clarified
each case, as well as the pressure differend®, betweert =0 andL, AL =L.

The boundary conditions for these equations are as follows. As far asdhection is

concerned, we have periodic conditions vaandpp, = p — i—FL’ :
av av
V|g—g = Vl]e= and — = — , 25
£=0 = Vle=L 0 o OE | (25)
ap, ap,
Pole=0 = Pple= and -— = — . (26)
1§ plE=L dE £ dE L

For the non-periodic directiop, on the solid surface the velocity boundary conditions ar
Dirichlet type and are given explicitly as a functiogg,

V = Vpnd atn = 1. 27)

Their numerical values differ depending on the problem under consideration. Symme
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conditions are applied along the bottom surface,

8v5_0

and wv,=0aty=0, (28)
an

wherevg, v, are the covariant components of the velocity vector field along the coordinz
&, n in the computational domain. The pressure in incompressible flows serves as a var
that ensures the satisfaction of the continuity equation and its boundary conditions
imposed through the influence matrix method [43, 44].

Note that for the solution of (23) and (24) in a pseudoconformal curvilinear syste
the equations are scaled by nonlinear mapping coefficients which introduce coupling
necessitate the use of iterative solvers to solve the resulting nonseparable elliptic eque
at each stage of the integration in time. We have previously worked on developing
efficient and robust iterative spectral solver for nonseparable elliptic equations [17]. "
solver was implemented in the integration scheme and will be described in the follow
sections.

3.2. Implementation of an Explicit/Implicit Time Integration Scheme
in Pseudoconformal Curvilinear Coordinates

The first step involves the time integration algorithm, where a mixed explicit/impli
method was implemented. It requires taking into consideration the accuracy as we
the stability of each of its components. A fully implicit method would be accuracy ratt
than stability limited; the associated disadvantages are the necessity of a nonlinear <
and treatment of nhonsymmetric and anisotropic matrix operators that typically req
memory and work intensive direct solvers [42]. However, in this work we were aimi
for an algorithm which exhibits almost linear scalabili®(Nr log, Nt), whereNr is the
total number of variables, and we developed it along the lines of previous work on di
numerical simulation of time-dependent Newtonian flows [6, 47-52].

The time integration of Eq. (23) was accomplished by using an Adams—Bashforth sec
order explicit method for the nonlinear terms and an Adams—Moulton second-order imp
method for the linear terms. Specifically, after integrating the Navier—Stokes equation,

thi1 thia thi1 1
v““—v”:—/ wxvdt — Vpdt+/ —Vydt, (29)
tn tn tw, Re

the following vector equation was obtained

(VZV)n-H. _ ?tevn-ﬁ—l _ ZRevl’H—l pn+1/2
2Re
— _Evn — (V)" — Re(w x V)" = 3(w x V)"]. (30)

These equations were evaluated in covariant form in the pseudoconformal curvilinear ¢
dinate system, as described in Appendix A. Each component of Eq. (30) was multiplie
(h;f/M)”Jrl in order for it to take the form of a generalized Helmholtz equation, which w
solved with the efficient solver presented in [17]. In addition, there exist extra terms in (
when the mapping is time-dependent. Using various identities for generalized orthog
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curvilinear coordinate systems, we arrived at the following form for the equations of motic
in covariant components (where substitutingvith & or » produces thé or n component
of the momentum equation, respectively),

1 82v,?/+1 32v3/+1 - ae<h_§)n+1vn+l ~ 2Re<h_§> n+18pn+1/2
M

Mn+l - §g2 an? At \ M v B,
A4 1 82Inh; N 92Inh.\ "t N hZ\ "t 2Re , V2"
=AW ANV o2 M At ’
h2 n+1
— Re(ﬁ) [(w x V" = 3w x ", (31)
where
2(58 - ) 5 V=
§ an ’

A(w) = 2’7 3U§ 81),, ]73 |nh§ (32)

e — @) v=n

Continuity was imposed indirectly through the solution of a Poisson equation that w
obtained by constructing the divergence/tf!, which was then set to zero, from the com-
ponents of the time discretized Navier—Stokes equation and muItipIyingh@i}!m/l)““. In
this way, we took advantage of the pseudoconformal character of the mapping, specific
the constant value of the conformal modMegratio of the scale factors). The corresponding
equation in a compact form is

1 82 pn+1/2 32 pn+1/2
Mn+1 852 3,72

h2 n+1
<MS> {Vn+1 . (Vn+1 pn+1/2)}

h2 n+1 1 1
— (Mg) {ﬁeVrH*l . (VZV)I'H-]. + EVl'l+l . [(w X V)n—l _ 3(w X V)n]

1 2R

A comprehensive list of the formulae appearing in the above equations can be foun
Appendix A.

Equations (31) and (33) had to be solved simultaneously due to the coupling indul
through the curvilinear coordinate system. When a solution for the velocities and the pres:
was obtained, the values were updated and the time was advanced. Details concernin
application of the iterative biconjugate gradient solver and the imposition of the bound
conditions are discussed in the following sections.
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3.3. Development of an Iterative Spectral Solver for a Set of Nonseparable
Stokes-Type Equations

Equations (31) and (33) can be considered in the following general form during
solution process,

1 82113“ 32v$+1 - ae h_g n+1UnJrl R h_g n+18pn+1/2
Mn+l §g2 an? At \ M v M EY,
= [RHS(V; t = th11)]y + [RHS(V; t <tni1)]y, (34)

1 32 pn+l/2 82 pn+l/2
Mn+1 852 3,,2

= RH3(p; t = thy1) + RHS(p; t <tnya), (35)

where the terms RHS; t =t,,1), RHSV; t <th.1), RHSp; t =t,.1), and RHSp;t <
thy1) denote the groups of terms on the right-hand sides of the velocity and pressure ¢
tions, calculated before and during the current time step and are defined in Appendix

The solver used is the outgrowth of the one that was developed in a previous public:
[17] to solve nonseparable elliptic equations re-cast in the form of a modified Helmh
equation with a non-constant coefficigp(t, n) in a rectangular domain,

2 2
e TRYS -~ e Q= fE . (36)

where f (¢, n) is an arbitrary functionR a constant, ané, n the coordinates of the rectan-
gular computational domain. The solution method developed here consists of a spec
preconditioned biconjugate gradient algorithm due to Sleijpen and Fokkema [57], whic
a generalization of an older algorithm introduced by Van der Vorst [58]. The preconditio
is an iterative algorithm due to Concus and Golub [59], and is applied in conjunction v
a fast direct spectral Poisson/Helmholtz equation solver [3] for the repeated solution
Helmholtz problem with constant coefficients, without it being necessary to reach full c
vergence (full convergence is not possible with the Concus and Golub algorithm in ir
cases [17]):

92 92 ) .
<@+Ra—nz—K)Q'”=(g($, n —K)Q + f(& . (37)
InEq. (37), the superscriptienotes values at successive iterationsiaisa free parameter,
which usually has the so-called min-max value:

1
S {min[g(§. m)] + max[g(€. n)]}- (38)

If desired, the parametét can be optimized for higher rates of convergence.

This iterative solver exhibited almost linear scalability, requiring approximate
O(Nr log, Nt) operations iy being the total number of spectral modes), since the mc
computationally demanding routines are FFTs. Comparing the number of required F
with that for a conventional pseudospectral code applied for separable equations wh
fast solver can be used, one finds that there exists a larger prefactor, of the order of 10
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and thus, it is not as efficient. However, because of the use of an efficient preconditio
the number of iterations is always of order 10 and therefore, the value of the prefac
never becomes very big. For the problems addressed here, the discretized equations a
separable and a direct solver cannot be used. For small problems it is possible to use a «
solver in association with a conventional pesudospectral method [60—62]. Our experie
is that the present code becomes quickly more efficient for meshes larger thaB332
Spectral element methods can also potentially exiigi log, N) performance, provided
that an effective preconditioning of the final equations is available. Unfortunately, even
that case the prefactor is likely to be big as there is no predictable way to achieve a
convergence. The proposed algorithm, although it does not have the geometric flexib
of methods using domain decomposition, has the advantage of predictable efficiency
high accuracy within its domain of applicability, which is quite broad in its own right.

The proposed algorithm is best suited for use in time-dependent direct numerical sit
lations, especially when extended to three dimensions, which can be easily accommoc
if the third dimension is neutral,e., Cartesian (with no mapping) and periodic. In that
case, one can still map a domain where the boundaries vary along one of the two peri
dimensions, and use the same principles discussed in [17] to create an algorithm which
iteratively FFTs and a direct solver for separable elliptic equations. The computational I
will be againO (N~ log, Nt) with a relatively small increase in the prefactor compared
the two-dimensional case, since now a few more conjugate gradient iterations are reqt
for convergence of the Stokes-type problem at each time step. However, in three dimens|
the performance of the method is likely that it will overtake that of other implementatio
not exhibiting almost linear scalability much sooner than in two dimensions due to t
much faster increase of the number of unknowns with increasing mesh resolution al
each individual direction.

The solution procedure resulting from the extension of this iterative solver to the Stok
like system of Egs. (34), (35) consists of the following steps. First, the residuals of Egs. (
and (35) are constructed spectrally and are solved iteratively within the preconditione
the form

{ 1 821}3[“ . 821),?,“ 2Re< Kk )n+1 1 2Re< k >n+1apn+l/2 }i+1
7 = v _ _

Mn+l §g2 an? At \ M v M EY
2Re h2 n+1 h2 n+18 n+1/2
D Sail (. o+ 2Re( = — k) 2P
At \ M M Y
1
+[RHS(v; t = thy1)]y + [RHS(v; t < tﬂ+1)]1/f} , (39)

{ 1 82 pn+1/2 N aZpr'H—l/Z

i+1
M+l gg2 an? } = {RHS(p; t =tny1) + RHS(p; t < th1)}',  (40)

where the superscriptdenotes the iteration number to which the values of the variable
used to calculate the various terms correspondkaﬁ(%[min(hg) + ma><(h§)]. As before
[17], this iterative procedure is only carried out for a limited number of iterations (typical
2-4), and the iterative process does not even need to converge for the precondition
work efficiently.
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The boundary conditions for the pressure were imposed through the influence m
technique [43, 44]. According to this technique, the pressure boundary conditions are
posed implicitly through the requirement that the divergence of the velocity fieldatitte
time step be zero on the boundaries. This was a necessary and sufficient condition, a
naturally from the construction of the divergence of Eq. (30) (and post-multiplication w
(hz/M)™+1) and the substitution of Eq. (33). The equation obtained is

1 32 hg n+1 h2 n+1 2Re h? n+1
- % (ty. 2 (Zwv. _ Tty -0 (41
i) ae(wvy) a(uv) =o @

One notices immediately that the solution of this Helmholtz equation is zero if and onl
the divergence of the velocity is zero on the boundary.

In order to apply the influence matrix technique efficiently, it was used within the prec
ditioner. In fact, one of the advantages of the chosen preconditioner that led to its sele
(apart from the efficiency and accuracy of the resulting iterative solver), was that it
accommodate an efficient application of the influence matrix technique. Specifically, d
the coupling of the Fourier modes arising from the non-constant coefficient of the Helmh
equations arising from (31), it would be necessary to apply this techiiguemes (the
number of Fourier modes) and solveldnx N; linear systemto find the correct coefficients
that mandate the pressure boundary conditions. However, a careful look at Eq. (37) rev
that when one performs the transformation described (which is essentially a lineariza
to Egs. (31) and (33), leading to (39) and (40), the resulting equations have constant ¢
cients and the Fourier modes are decoupled. Therefore, one could proceed in applyir
influence matrix technique as in the case where the model equations were separabl
fast direct spectral solvers for Helmholtz equations were utilized [51].

3.3.1 Moving Solid Boundary: Time-Dependent Mappingo accommodate a time-
dependent mapping, the momentum equations had to be modified with some corre
terms which correspond to the change in time of the covariant basis vectors of the gener:
orthogonal curvilinear system used for the mapping between the physical and computat
domains. When such a case is considered, which would arise for example for free-su
flows or peristaltic flows when viewed in the laboratory (observer) frame, the propo
algorithm can adapt to the new demands efficiently using the time derivatives calcul
in Subsection 2.4. The momentum equations now have some additional terms whicl
treated as nonlinear, through an Adams—Bashforth integration scheme. The major adva
of the proposed method is that by allowing the mapping of the surface deforming in tim
be efficiently evaluated using the same Poisson solvers as with the mapping for a static
surface and by incorporating explicitly the additional terms into the flow equations at e\
time step, a computationally efficient and highly accurate numerical simulation of mov
boundary problems can be developed. The relevant set of equations in this case becc

1 32U]?/+1 32v]r/11+1 2Re h2 - R h2 n+1 9 pn+1/2
MPl 982 | anZ | AL \M ”“’ M oy
1 3%Inh;  8%Inh:\ 1"t /h2\"*t _Re,
— A n+1 - & & E VZV
W) +[v¢,<M e+ +( SV

h2 n+1
_Re<ﬁé> [(b+wx V)" —3(b+wx V)", (42)
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wherey =&, n, A(y) has been defiend in Eq. (32), and

1 aZpﬂ+1/2 32pn+1/2 1 1 n+1 1 aZIn hé— aZln hE n+1
M+ gg2 an? 2Re<h2> (M g2 an? )

dInh; dlnhg\ v nH
X[Z(UET—i_MUW 877 )_M_Un

h2\ " (1
+ (_g) {EV”+1~ [(b+w x )" =3B +w x V)]

M
_ Z—;GV”H. [ ZARte (V2" ]} (43)

whereb corresponds to the vector respesenting the additional terms whose covariant ¢
ponents are

b = |:8U| k:|d_u k. 99 (44)

F at 9 %,

wherei, j, k are dummy indices corresponding to the coordingtesidn, g andg* are
the covariant and contravariant basis vectors, respectivelwi"‘fmdpresents a Christoffel
symbol for the curvilinear coordinate system (see Appendix A for detailed expressions

3.4. Alternative Formulation Using the Divergence-Free Condition Explicitly

An alternate route of applying the incompressibility constraint in the equations was a
examined. In this procedure, the divergence of the velocity field is imposed as one of
equations to be solved instead of the pressure equation. The implication of this change is
within the preconditioner, where the influence matrix technique is applied, the equation
the pressure is formed directly from the preconditioner velocity equations. The equati
for the velocity are the same as (34), whereas the pressure equation becomes

1 82pn+1/2 82pn+1/2 1 9 1 n+132vg+l M n+1azvg+l
M+l gg2 a2 2ReMaE <> 9€2 (h§> an2
_ 2Re 2Re/ M\ "t
s g+l (F) [RHS(V; t = tn11)]e
3
_2Re(M
h2

1 9 1 n+132vn+l M n+182vn+1
_— _ _n _ n
* 2Redy (h2> pE? +<h§) on?

_2Re L 2Re/ M
AU h2

n+1
) [RHS(v; t < tn+1)]s}

n+1
) [RHS(V: t = the)],

2R n+1
e( h2) [RHS(v; t < tnﬂ)],,}. (45)
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This formulation was found to result in behavior akin to the simulation method discus
in the previous sections, but it required a larger number of iterations to converge for ¢
time step than the previous, pressure equation formulation. As aresult, the pressure eq
formulation was utilized in all the applications discussed in the results section below.

4. NUMERICAL RESULTS

The numerical scheme was validated by implementing it in various flow problems ex
ined in the literature and reproducing their results. We examined three different proble
the problem of flow in an undulating channel where a steady state is attained, the proble
oscillatory flow in an undulating channel, and finally peristaltic flow, where the sinusoi
boundary can be considered to be translating with constant velocity along the flow direc
X. By comparing the results with those in the literature, we demonstrate the validity
accuracy of our approach.

4.1. Steady Flow in an Undulating Channel

We performed simulations of flow in an undulating channel, where we integrated
equations in time to reach some of the steady state solutions reported by Nishimure
co-workers [30-32], who used a finite element method and the streamfunction-vorti
formulation for the flow equations. We implemented the algorithm where the volume
flowrate Q was specified. The algorithm can be also implemented for a specified pres
drop across the channel as the driving force. The boundary conditions for the veloci
the stationary top boundary are non-slip. Thus, we have two Dirichlet conditions wk
the velocity components are required to vanish. The Reynolds number in our simulatio
defined aRRe= Q/v, where the flowrate is given by the relati@= HayUay, with ug, being
the average velocity defined by the imposed flowrate and the length scale, which is ¢
to the average channel half-widkfy,, taken as unity. The Reynolds number in our work i
equal to half the value of that in the work by Nishimwtaal. [30], which we denote with
Reys. We performed calculations up Re= 150, which corresponds ®e;s= 300, and is
very close to the region where the flow has a transition to turbulence due to unsteady v
motion, and where three-dimensional simulation is requiRgis= 350. The amplitude
of the undulation of the channelis equal to 713 and the dimensionless channel lenigth
is 56/13. As far as the resolution of the simulations is concerned, we used three diffe
meshes. Initially the simulations were carried out with a mesh consisting of 80 Fourier
33 Chebyshev modes; we repeated with ax6885 mesh and finally used a 12865 mesh.
The time step used was»510~* dimensionless units.

In Table I, we list the calculated values of the friction facfodefined ad = HyyAP/L,
whereA P/L is adimensionless pressure drop per unitlength (scaled in inertial units). Si
Ha=1, f is equal toAP/L. We obtained values of the friction factor f&e= 0.5, 10,
50, 150. The values for the most refined mesh are plotted in a logarithmic plot in Fig. :
facilitate a comparison with Fig. 7 in [30]. It can be seen that there is quantitative agreer
and that the main characteristic, which is a change in the slope aR®yge 15, is captured.
As a side note, we should mention that the flowrates corresponding to inertialess flow
various amplitudes of undulation were found in complete agreement with those resu
from very accurate pseudospectral calculations [62], up to all five significant digits repo
in that work.
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TABLE |
Calculated Friction Factors, f, at Various Reynolds Numbers
and Mesh Sizes for Steady Flow in an Undulating Channel

Calculated friction factoif

Mesh size
Re 80 x 33 64x 65 128x 65
0.5 19.394439 19.394440 19.394440
10 1.060200 1.060065 1.060062
50 0.290946 0.290945 0.290943
150 0.116150 0.117656 0.117623

Note.The amplitude of undulatioa is 7/13 andL /Hay = 56/13.

In Fig. 3, we show the calculated wall vorticity profiles at various Reynolds numbe
(Re=10, 50, 150. We have also included the profiles from the simulations in the literatu
[30]. A comparison is rather favorable since we can see that there is quantitative agreen
There are some differences for the high Reynolds number data. In addition, in all ca
the peak of the vorticity is calculated to be located a little before the end of the chanr
whereas for the data from [30] it is shown to be at the end of the channel. By observ
Fig. 10 in [30], it can also be seen that the experimental value of the vorticity at the €
of channel is also slightly less than their predictions. This is also inferred from the rest
in [31], where they have captured the peak of the wall vorticity before the end of t
channel for oscillatory flow (Figs. 5-8 in [31]), and also measured it in experiments (Fig
in [31]).

Finally, for steady flow in an undulating channel we have also performed simulatio
for a high Reynolds number case and another with high surface deformation in orde
provide a better picture of the capabilities of the method. For these simulations, we impc
an external pressure drop, equalA® /AL = —1/Re to drive the flow. In the first case
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FIG. 2. Calculated friction factorf, at various Reynolds numbers for steady flow in an undulating channe
The amplitude of undulatiorny, is 7/13, L /Hay=56/13, and the mesh size is 128129.
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FIG. 3. Calculated wall vorticity profiles at various Reynolds numbers for steady flow in an undulati
channel. The amplitude of undulatian, is 7/13 andL /Hay = 56/13. The flow is from left to right.

the amplitude of the undulation of the chanadk 0.15, the dimensionless channel lengt
L/Hay is 6.25, the Reynolds numbBeis 1000, and the time step is equal to-i0Here,
we are able to capture the flowfield for a mesh as small as te 33 due to the small
deformation. Results with a more refined mesh (85) showed no changes other thar
in the truncation error (the calculated flowrate is equal to 0.27390523). This is dut
the fact that the mesh is resolved extremely well and the spectral coefficients decay
rapidly to zero for this small deformation, making the small mesh more than sufficient.
magnitudes of 23 of the Fourier modes corresponding to the first Chebyshev mode
the velocity and the-coordinate of the mesh are plotted in Fig. 4, where one can verify t
exponential convergence of the method.

In the second case,= 0.45, L /H,, =3, Re=10, At =102, a more refined mesh was
necessary due to the large deformation. Simulations with meshes>o664 128x 129,
and 256x 65 revealed that 65 Chebyshev and at least 128 Fourier modes are require
an accurate solution of the mapping which results in a solution accurate to 7 decimal pl
for the flowrate (see Table Il). Figure 5 shows the magnitudes of the Fourier coefficient:
this case. One notices the larger number of modes needed to achieve values of the ¢
cients smaller than 13° for the mapping coordinates, in contrast to what is necessary
the velocity components. We should emphasize that these two cases demonstrate tt
method described in this work can accommodate high Reynolds flows with smaller me
than flows with high surface deformations, and thus, there is a strong motivation for the
of superparametric mapping. In this way, a relatively large number of spectral modes ce
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TABLE Il
Calculated Flowrate for Various Meshes for
Steady Flow in an Undulating Channel

Mesh size Flowrate
64 x 65 0.13131848

128x 129 0.13131907

256 x 65 0.13131904

Note. The amplitude of undulationg, is 0.15,
L /Hav=3, andRe= 10.
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FIG. 4. Steady flow in an undulating channel. Magnitudes (8 &f the Fourier modes corresponding to the
first Chebyshev mode for the velocity components (a) ancibeordinate of the mapping (b) at different mesh

sizes.Re= 1000, the amplitude of undulatioa, is 0.15 and_ /Hay = 6.25.
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FIG.5. Steady flow in an undulating channel. Magnitudes (8 &f the Fourier modes corresponding to the
first Chebyshev mode for the velocity components (a) andibeordinate of the mapping (b) at different mesh
sizes.Re= 10, the amplitude of undulatiom, is 0.45, and_ /Hay = 3.

used only for the mapping problem, making the solution of the flow problem still possi
without the use of an excessively large mesh. This is especially important for free-sur
flows and three dimensional calculations, where the computational cost associated wif
solution of the flow problem is of major significance.

4.2. Oscillatory Flow in an Undulating Channel

The method was also implemented for oscillatory flow in an undulating channel, wt
we were imposing a sinusoidally varying flowrate. In this way we can validate the metl
in problems where there exists a transient driving force, leading to a stationary rather
a steady state. Our benchmark problem was taken from a paper by Nislgtralr§34].
The geometry of the undulating channel is the same as in the steady flow problem e
ined previously. The characteristic parameters defining the flow are the Reynolds nur
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FIG. 6. Oscillatory flow in an undulating channel. Streamline patterndfe£ 250 andSt=0.034 at two
different timesf/ T ~ 0.45 and 0.5. The amplitude of undulatien,is 7/13, L /Hay=56/13, and the mesh size
is 32 x 17 modes. The flow is from left to right. Dashed lines denote negative contour values.

and the Strouhal number. The Strouhal number is definedtasf H2(1 — @)?/2Qmax
where f is the frequency of oscillatiortl,, the average half-width of the channelthe
amplitude of the undulation, anQmax is the maximum flowrate. The Reynolds number
is defined aske= Qnax/v. Finally, the flowrate depends on time through the relationshi
Q) = Qmaxsin(2r f t). With these definitions, our values fStandRecoincide with those

in [34].

Our test case corresponds3b= 0.034 andRe= 250. Since in [34], streamfunction plots
were mainly used with no data for specific values of the streamlines, for a series of runs
focused on a less quantitative level than in the steady flow case and used a coarser
(32 Fourier modes by 17 Chebyshev modes). The timesstapas 5x 10~ dimensionless
units. With this resolution we could integrate the equations in time until we reached
stationary state observed in such flows faster, but we also retained enough accura
capture the characteristics of the flow field. As can be seen from Fig. 6, where we have
plots of the streamlines at different times, the flow-field starts separating into three disti
regions until a maximum separation is reached. These two snapshots agree well witt
corresponding plots in Fig. 2 from [34]. Figure 7 shows mesh convergence of the algorit
for a finer mesh 12& 65 and the same time step as before, from another series of runs.
present a succession of contour plots at different times, where we have noted the value
the streamfunction. The results tofT = 0.5 coincide with the results in the literature [34].

4.3. Examination of Peristaltic Flow in Two Reference Frames

The most interesting benchmark problem for us was the examination of peristaltic flc
Peristaltic flow arises from the propagation along the length of the channel of a progres
wave, resulting from the contraction and expansion of an extensible boundary of the char
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FIG. 7. Oscillatory flow in an undulating channel. Streamline pattern&fes 250 andSt=0.034 at three
different timest/T = 0.5, 0.516, and 0.596. The amplitude of undulatiof,is 7/13, L /Hay=56/13, and the
mesh size is 12& 65 modes. The flow is from left to right. Dashed lines denote negative contour values.

Such flows are abundant in the human body, where the phenomenon of peristalsis driv
mixing and transport of fluids. In addition, peristaltic pumping of fluids, which is a mea
of sanitary transport (since there is no contact of fluid with mechanical parts of the pur
has been utilized in diverse applications ranging from biomediaa) ¢irculation of blood
within artificial organs) to classical chemical industry processes, like the transport of slul
and corrosives [37]. In addition to the significance of such applications, peristaltic flow fr
a numerical standpoint provides us the opportunity to test our method for unsteady fl
when we formulate the problem in the laboratory (observer frame). In addition, we can
only the time-dependent mapping solution, assuming that we do not know the locatio
the surface priori, which leaves us with a problem very close to what we will have whe
considering time-dependent free-surface flows with this numerical scheme.
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FIG. 8. Pressure contouRRe=5, o =0.4, L/Hay=>5, andAP/AL =0 in peristaltic flow calculated in the
wave frame. The peristaltic wall (upper boundary) moves from left to right.

Specifically, we considered as before a two-dimensional channel with a moving sinuso
top boundary. This so-called peristaltic wall of the channel is defined by the followir
equation for its heighl,

h(x,t) = Hav{l —a cos{zfn(x — ct)} } (46)

where Hyy is the average half-width of the channeljs the dimensionless amplitude of
the undulationL is the channel’s length, arais the velocity of propagation. At=0 we
imposed again symmetry conditions.

This problem can be considered steady when formulated in a frame moving with cons
velocityc (wave frame) through a Gallilean transformation. In the wave frame, the peristal
boundary is stationary and the top boundary is given by Eqg. (8), and the only thing t
changes are the velocity boundary conditions. In fact, all studies so far have been c
in the wave frame. In the wave frame we solved a problem from [37] to test the mett
for non-zero boundary conditions. Here we define our Reynolds numbee-agH,,/v,
which is five times larger than the corresponding Reynolds nunfteg, in [37]. The
geometry of the channel is defined by the parametet®.4 andL /Ha,, = 1. The resolution
of the computational mesh was 64 Fourier and 33 Chebyshev modes. The time step
102 dimensionless units. We performed runRet= 0.5, 5, 50 (Rerp = 0.1, 1, 10), with no
pressure drop across the channel, to reproduce the results in Figs. 6, 12, 13 from [37] w
we presentin Figs. 8,9, and 10. It can be seen that there is almost full quantitative agreen
the only minor differences being at a few points close to the boundary. It is reasonabl

FIG. 9. Longitudinal velocity profiles foRe=5, « =0.4, L /Hay=5, andAP/AL =0 in peristaltic flow
calculated in the wave frame. The peristaltic wall (upper boundary) moves from left to right.
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FIG. 10. Pressure distributions along the peristaltic wall for vari®Rsand o« =0.4, L/Hay=5, and

AP/AL =0 in peristaltic flow calculated in the wave frame. The peristaltic wall (upper boundary) moves fr
left to right.

assume that our higher-order spectral method is more accurate than the finite-differ
scheme in [37].

After the method was validated in the wave frame the final step was to validate i
the laboratory frame. Here we used Egs. (42) and (44). In addition, we used the mar
to obtain only the derivatives of the coordinatesy. The values ok, y were calculated
through explicit second-order Adams—Bashforth integration. We could also have us
more accurate scheme like Runge—Kutta, since in this case the integration of the derivz
of the coordinates does not affect the time-discretization of the Navier—Stokes equat
There were two issues to examine. The first issue was to see whether the laboratory 1
integration of the solution in the wave frame is stable (Run A). Secondly, we wanted to
if the method will converge to the correct solution starting from a different initial veloci
field (Run B). We chose to perform arurRe= 1, « = 0.1, L /Hay=56/13, andAt = 1073
in this case. We chose a smaller amplitude in order to have a more accurate solution
mapping with the same mesh than before, so that we could see whether the difference
solutions is dominated by the integration of the coordinates and we get a method exhib
second-order accuracy in time. The smafReresulted in smaller integration times. In
Fig. 11 we have plotted the flowrate in time obtained from these two runs. The nege
value is because we have a net flow from right to left. It is evident that they conve
nicely on each other and that both are stable. Depending on time step usdrf#id04),
we obtained agreement to 6 and 8 digits, respectively, with the wave frame solution
which we know exactly the values &f y. This implies that the accuracy with which we
know the coordinates dominates the error in the method. This is natural, since we |
used extensively identities of the orthogonality of the mapping. However, since this is
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FIG. 11. Demonstration of convergence (Run B) and stability (Run A) of the algorithm in the laboratol
frame, for peristaltic flow witlRe=1, « =0.1, L /Hay=56/13, andAP/AL =0. The peristaltic wall (upper
boundary) moves from left to right.

efficient O(N log, N) technique, we can afford to go to larger meshes and solve probler
with large surface deformations and higher Reynolds numbers more easily than most ¢
numerical schemes.

5. CONCLUSIONS

We have developed and verified a numerical scheme for solving spectrally two-dim
sional, time-dependent flow problems in moderately complex geometries. This method
hibits almost linear scalability and exponential convergence. It uses an orthogonal map
algorithm, an efficient and robust iterative solver, and the influence matrix method for <
isfying the incompressibility condition. It is easily extendible to three-dimensional and/
free-surface flows with or without surfactants. In addition, the algorithm can be paralleliz
in a straightforward fashion. Thus, it provides a unique new computational tool for t
calculation of complex multi-dimensional and time-dependent flows.

APPENDIX A: PSEUDOCONFORMAL CURVILINEAR COORDINATE SYSTEM

In this appendix, the expressions of the various terms entering the model equat
are presented for a generalized orthogonal curvilinear and time-dependent coordinate
tem. The notation used follows the conventions in [63] as far as both operators (gre
ent, covariant derivative, divergence, Laplacian, cett) and vector components. For
an arbitrary vectorg, its covariant components are respesented by lowered indices
and its contravariant components by raised indicesvherei is an arbitrary dummy
index. When necessary, the Einstein summation convention for repeated indices is utili
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Finally, the coordinateg,  are, in general, denoted hy, wherei =1, 2 is a dummy
index.

For the covariant component of the time derivative of the velogjtywe take its inner
product with the covariant basis vectpr

av. dul K agl
r — gt 2 47
* [aul vk "] at "9 o, (47)

v
ot

_ ;i
oAt |y,

g-
X(0).y(t)

where Fi"j represents a Christoffel symbol for the curvilinear coordinate systengfand
the contravariant basis vector. The last two terms on the right-hand side are present
when the coordinate system exhibits a time dependence, as in the case of a movin
deforming boundary, and are treated, as mentioned before, explicitly in the time integre
scheme exactly like the nonlinear convective terms for the velocity in the Navier—Stc
equation. When the coordinate system does not change, such as for a stationary or unif
translating boundary, these last two terms drop out.
The components alongof the middle term in Eq. (47) are

oo du  [av, alnh dnh, de
e e R T

al)g 8|nhg a'nhg dn
s - 48
+{377 an * o dt’ (48)
v, . ]du _[8v, dlnhe  dinhe ]d&
oul de T lee T Tan T Tae "t
avn 19dln hg aln hg dr]
PPV - . 49
+{3n M og oy 'ldt (49)

For the last term in (47) we have

b 9 [ox a [ay
ngk.ﬁ n = [vg (giex-f-gf/ey)‘*‘”n (g;’ex—i—g;jey)] ’ {% (E)e 0& ( )ey} (%0)
and
3977 _ 3 & 7 v : i 3_X i ﬂ
v g . = [vg (gxex +gyey) + v, (gxex +gyey)] an \ at &+ on \ ot &)

(51)

wheree, ande, are the Cartesian basis vectors for a two dimensional coordinate sys
andg;, g; andg;, gy the components of the contravariant basis vectors in the Cartes
frame.

The covariant components of the Laplacian of the velocity which enter into the equat
of motion are

1 4% 1 9% M /dv:  dv,\ dlnh 1 8%Inh 9%Inh
V=125 Tha e R ( o\ ez TV e
(52)

an 9
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and
V). = 1d%, 1% 2 <8v§ 8v,,> dlnhg
" hzog2 hZon?  hZ\on 05 ) 0%
1 82|nhg 82|nh5
-= M = ). 53
hé”"( ez TV ) 5

The scaled value of the divergence of the Laplacian of the velocity for an incompressi
fluid, which is used in the derivation of the Poisson equation for the pressure, is taken fi
the formula

M
<h2>v Vav

1
= M£(V VV); +—(V ),

1 1 32“’] hg 2In hé aln hg aln hg Vg
_<h_§)<ﬁ 982 T a2 )[Z@ e MU, )‘M_””]' 54

Finally, the covariant components of the rotational part of the convective terms in t
equations of motion along andn are

N L)

(W X V) = hg(an ag) (55)
_ 1 /ov,  du

(w XV)n = hg(@g 37]) Vg . (56)

APPENDIX B: DEFINITION OF THE RIGHT HAND SIDES OF THE DISCRETIZED
MOMENTUM AND PRESSURE EQUATIONS

dve v, \dInh. " 1 8%Inh;  82Inh.\|"*
RHS(v; t =t =2|( — - 2
[ (V1 n+l)]$ |:( an 8%- ) 87’] +|v M 8%-2 + an2
(57)

2Re

hg n+1
[RHS(v; t < th1)]; = <_) Al‘

Y — (V)" }

§

n+1
) [(w x V" = 3w x v (58)

n+1
[RHS(V; t = tyy0)], = [ : <aﬁ B %) %}

an
1 9%Inh;  8%Inh:\1"*
%”"(ﬁ I T ﬂ ©9

)n+1|: J2Re 5 n:|
——— V" — (V)

At 0

n+1
)l - s <, (60)
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1 /12\"/18%Inh; 8%Inh.\"?
RHS(p; t = ty11) = (—)( S+ 25)

2Re\ h? M 9g2 an
dlnh dlnh n+1
X[Z(UéTé"‘MUn ané>—%—vn:| (61)
2\ h+1 1
RHS(p; t < thy1) = (ﬁ) {EVM Jw x V™= 3w x )"
1 2Re
— VML — (VA0 | 8. 62
2Re [ At (V) (62)
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