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A computationally efficient pseudospectral method is developed for incompress-
ible flow simulations in two-dimensional geometries involving periodicity in one
direction and significant surface deformations. A pseudoconformal mapping is used
to map the flow domain into a rectangle, thereby establishing an orthogonal curvi-
linear coordinate system within which the governing equations are formulated. The
time integration of the spectrally discretized, two-dimensional momentum equations
is performed by a second-order mixed explicit/implicit time integration scheme. The
satisfaction of the continuity equation is obtained through the solution of a Poisson
equation for the pressure and the use of the influence matrix technique. A highly
efficient iterative solver has been developed for the solution of a generalized Stokes
problem at each time step based on a spectrally preconditioned biconjugate gradi-
ent algorithm, which exhibits almost linear scalability, requiring an orderN log2 N
number of operations, whereN is the number of unknowns. Numerical results are
presented for two-dimensional steady, oscillatory, and peristaltic flows within an un-
dulating channel, which agree well with previous results that have appeared in the
literature. c© 1998 Academic Press

1. INTRODUCTION

Multidimensional and time-dependent flows within an irregular geometry, fixed but also
possibly time-dependent, are encountered in many industrial processes (such as, for exam-
ple, material manufacturing processes) and natural biological systems (such as, for example,
blood flow in arteries). Moreover, free surface flows, where one of the fluid boundaries is
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dynamically determined, are additionally important to ocean engineering, naval operations,
geosciences,etc. The flow problems become even more complicated in the presence of
surfactants, the interaction of which with the flow through the modification of the surface
tension intimately couples the fluid free surface and surfactant concentration [1, 2]. There-
fore, it is not surprising that the solution of these problems can only be achieved (except on
rare occasions) numerically. However, the inherent complexity of the governing equations
is such that even a numerical solution, using currently available numerical techniques, is,
in general, very computationally intensive (indeed, prohibitively so when a fully developed
turbulent flow is involved), even when the fluid involved is assumed Newtonian. Thus arises
the realization that further progress can only be achieved through the development of new,
computationally efficient algorithms. The development of such a new numerical algorithm,
based on spectral methods, and its testing with model flow problems with solid boundaries
is the subject of the present paper. Its extension to free surface problems with surfactants
will be addressed in a subsequent publication.

Among the numerical methods developed for the solution of multi-dimensional and time-
dependent Newtonian flow problems, spectral methods are distinguished in that they are
both very accurate (converging exponentially fast with mesh refinement) and, based on the
availability of Fast Fourier Transforms (FFTs), they have the potential for a very efficient
computational implementation (with a workload increasing only mildly faster than linearly,
O(N log2 N), with the number of modes involved,N) [3, 4]. This combination of high
accuracy with computational efficiency has made spectral methods the methods of choice
within their domain of application. Indeed, most of the standard turbulence direct numerical
simulation data (essentially, homogeneous turbulence [5] and turbulence in a channel flow
[6]) have been obtained with spectral approximations.

Roughly, the exponential convergence of spectral approximations is guaranteed for
smooth solutions which are, in general, anticipated for flows with smooth geometric bound-
aries [3, 7]. This places some (but not very severe) restrictions on the utility of spectral
methods. However, the other characteristic of the spectral methods, namely their computa-
tional efficiency ofO(N log2 N), relies critically (so far) on the use of fast Poisson solvers.
Unfortunately, these are only available for a very limited number of smooth geometries,
such as a channel, pipe, or eccentric cylinders geometry, where the coordinate dependen-
cies decouple in the Poisson equation [3]. Thus, with the exception of direct numerical
simulation of turbulent flows within simple geometries, current implementations of spec-
tral methods do not perform withO(N log2 N) efficiency, which makes their application
to large scale flow simulations computationally limited to rather simple flow geometries
and/or flow structures. Indeed, for complicated flow geometries, lower order approximation
techniques (such as finite difference [8], finite elements [9, 10], and, more recently, finite
volume [11, 12]), are in general preferred. Nevertheless, when high accuracy is required (as,
for example, in transition and turbulent flow or in free surface flows involving surfactants)
the high accuracy spectral approximation becomes almost a necessity for a successful nu-
merical simulation [8]. This has motivated a considerable amount of work for the extension
of the applicability of these methods to more complex geometries [13–15].

In order to extend the applicability of spectral methods to the solution of flow problems
with irregular boundaries, two approaches have been followed so far. The first involves a
mapping of the flow geometry onto a rectangular one, where the spectral approximation
can be implemented directly [13]. An application of this approach for two-dimensional
pseudospectral flow calculations in an irregular domain with a non-orthogonal coordinate
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system can be found in [16]. The second approach involves the use of macro-elements, with
respect to which the global geometry is described [14, 15]. The spectral approximation is
then used to approximate the variables within each of these elements, whereas lower-order
continuity is imposed on the inter-element boundaries. It should be noted that the mapping
of the flow boundary into a rectangular domain is also typically used in conjunction with the
second approach when the macro-elements have irregular shapes (e.g., spectral elements)
[14, 15]. One method of obtaining this mapping is through the solution of a Poisson equation
for the new coordinates in terms of the old ones (orthogonal mapping) which is similar to
the pseudoconformal mapping discussed in more detail below but does not make use of the
special identities that this last one offers.

The major issue that arises with any of the pre-existing spectral techniques is their effi-
cient computational implementation. Although significant strides have been made in that
direction, the implementation of either one of the above-mentioned approaches requires the
solution of sets of linear equations involving full matrices. Both direct or iterative methods
that have been used to achieve that solution have so far failed to demonstrate an optimum
O(N log2 N) efficiency. It is the purpose of the present work to propose an alternative
approach which, by exploiting the special structure of the equations resulting from a pseu-
doconformal mapping of the original (deformed) domain, allows for the use of specially
preconditioned conjugate gradient techniques that, as numerical evidence suggests, seem to
lead to an optimumO(N log2 N) computational efficiency. This method resulted as the out-
growth of a similar approach proposed for the solution of generalized Helmholtz problems
in a previous paper [17].

In general, at the present time, any numerical method developed for the solution of
Newtonian flow problems within deformed boundaries involves a step where the compu-
tational grid is numerically generated, whether or not the problem has a time dependency
and/or a free surface. Fundamental discussions of many grid generation techniques are
provided in [18, 19], together with applications to various areas involving the numerical
solution of partial differential equations.

Conformal mapping is a strategic method of numerical grid generation which allows for a
considerable structure in writing the governing equations in the transformed coordinates for
flow problems involving irregular geometric boundaries. This technique takes advantage of
the mathematical and computational simplicity of the transformation between the physical
and computational domain that occurs when the scale factors are equal to each other. It
has the advantage that the partial differential equations expressed in that coordinate system
acquire the minimal number of additional terms because the coupling of the two independent
variables is limited to only lower-order terms, which allows the use of efficient iterative
solution techniques. Furthermore, numerical codes that are very general in their application
can be written, with all computations done on a fixed rectangular grid in the transformed
computational space regardless of the shape and movement of the physical boundaries [18].
An additional advantage of conformal mapping is that it allows the use of the same efficient
routines to solve for the mapping as those which can be used to solve for the viscous term
in the flow equations for constant coefficient problems.

Although conformal mappings require the length scales in the different directions to be
correlated in order to allow for a constant ratio of scale factors equal to unity, this problem
can be easily alleviated by constructing orthogonal mappings in which the ratio of scale
factors is not unity, but constant throughout the domain [19]. Since these mappings can be
reduced to conformal mappings through a simple rescaling in one direction, they retain most
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of the properties of the conformal mappings and are referred to here and in the following
aspseudoconformal mappings. Here these are exclusively used in favor of the conformal
mapping given the flexibility that they offer in their numerical implementation.

Pseudoconformal mapping has a significant problem in that the dual requirements of or-
thogonality and the constant ratio of the scale factors are too restrictive. Thus, this mapping
can only be defined for a specific class of boundary geometries [20]. Although this class
is very restrictive as far as three-dimensional geometries are concerned, it is only mildly
restrictive for two-dimensional ones. Indeed, it allows for arbitrarily deformed (but smooth)
two-dimensional geometries that are periodic in one direction [21], and this is exactly the
case where we are limiting the applications discussed in the present work. Moreover, since
dependence on a third periodic dimension can also be considered so that most of the prop-
erties discussed here are also transferred there with minimal changes, the applicability
of the present approach appears to be extendible to at least three-dimensional problems
involving surface variations in one of the two periodic dimensions for which several impor-
tant applications exist.

The other drawback of pseudoconformal mappings, as explained by Thompsonet al.
[18, 19] and Fornberg [22], is that they are usually ill-conditioned in the sense that small
changes in the shape of the mapped region can significantly change the position of some
boundary points, and that there is little control over the resulting coordinate system;i .e.,
the point-wise distribution of computational nodes on the boundaries cannot be specified
and internal elemental structure cannot be controlled. Ryskin and Leal [23] proposed two
different methods for the orthogonal mapping: a strong constraint method that was designed
for free-boundary problems in which a distortion function is specifieda priori, and a weak
constraint method that was designed for fixed-domain problems in which the boundary
correspondence is prescribed. Kang and Leal [24] proposed a more developed distortion
function for the orthogonal mapping. They solved the Laplace equations for the mapping
with Dirichlet-type boundary conditions [23, 24]. For the orthogonal mapping, Duraiswami
and Prosperetti [25] used the conformal module of the physical domain for the calculation
of distortion functions, which was defined as the ratio of the lengths of two adjacent sides
of a quadrilateral. However, in these works, by utilizing distortion functions they modify
the properties of the mapping which results in the loss of the mathematical simplicity of
the resulting equations; this is precisely the feature that we want to exploit here, since it is
utilized for the development of efficient conjugate gradient preconditioners. Therefore, the
orthogonal mapping with constant conformal module is developed here (pseudoconformal
mapping) particularly for the calculation of time-dependent Newtonian flows with a de-
formed (and in some cases moving) surface. The high accuracy guaranteed by the spectral
solution of the mapping equations whenever the boundary conditions that are applied are
regular is expected to compensate for the ill conditioning of the problem. Indeed, the numer-
ical evidence of the model flow problems (as presented in the results section) indicates that
an exponential convergence to the solution of the flow problem can be obtained provided that
one has a sufficiently accurate solution of the mapping equations, which, for isoparametric
methods like the one used here, dictates the lowest bound for the error of the scheme. With
this in mind, it is natural to consider using a more refined mesh for the mapping than for the
flow equations, which is very simple to apply for fully spectral algorithms, in order to have
a means of balancing the accuracy of the scheme with the computational cost in a more flex-
ible way. In this paper we did not use such superparametric mappings for the test problems
in order to keep things simple and focus on the fundamental concepts behind the algorithm.
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Nevertheless, a superparametric approach is recommended for “production” runs associated
with relatively large surface deformations. We must also note that a class of problems that
are prime candidates to apply a superparametric mapping are free surface flows.

In this work, we have used as a model flow problem the flow of a Newtonian fluid
within a sinusoidally undulating channel. This flow is examined under steady and time-
dependent (oscillatory flowrate) conditions corresponding to a fixed solid boundary as well
as under moving boundary conditions (pulsating flow), which serves especially well as a
test case for the applicability of our technique to free surface problems. Many numerical
and experimental studies have been undertaken on two-dimensional Newtonian flows with a
sinusoidal boundary. Sobey [26] presented numerical solutions of the time-dependent flows
through a furrowed channel, for the steady and unsteady cases, using a finite difference
method. He also investigated the occurrence of separation in oscillatory flow [27], and
observed steady and oscillatory flow in a rectangular channel [28]. Pozrikidis [29] undertook
a study for Stokes flow using the boundary integral method. Nishimuraet al.investigated the
flow characteristics in a channel with a symmetric, wavy wall for steady and oscillatory flows
through numerical calculations and experiments. The equations expressed in terms of the
vorticity and the stream function were solved by the Galerkin finite element method [30–34].

For moving boundary problems, Burns and Parkes [35], as well as Pozrikidis [36], studied
the peristaltic motion under the Stokes flow approximations. Peristaltic motion is defined
as the propagation of waves along the flexible walls of a channel or tube. Flows driven by
peristaltic motion provide an attractive means of sanitary fluid transport and they are often
used in industrial processes. Takabatake and Ayukawa [37] studied peristaltic flows in a
channel using a finite difference technique including the stream function and the vorticity
as the unknowns in the Navier–Stokes equations. They observed the flow in moving coordi-
nates, which travel with the same speed as the waves: the fully developed flow was treated as
steady because the configuration of the wall appears to be stationary. Kumar and Naidu [38]
studied peristaltic flow in channels with the finite element method and the streamfunction-
vorticity formulation. Takabatakeet al. [39] considered peristaltic flows in tubes using the
same method as in [37]. Peristaltic flow of viscoelastic liquids was considered by Boehme
and Friedrich [40] in the moving frame under the Stokes flow approximation. Karageorghis
and Phillips [41] solved a laminar flow problem in a constricted channel with a conforming
Chebyshev collocation method, wherein the flow region is divided into a number of rectan-
gular subdomains and the governing equations are written in terms of the stream function.
For the simulation of unsteady, free-surface flows, Ho and Patera [42] presented a Legendre
spectral element method based on the use of arbitrary Lagrangian–Eulerian methods for
representation of moving boundaries and the use of semi-implicit time-stepping procedures
to partially decouple the free-surface evolution and the bulk Navier–Stokes equations.

In this work we solve for two-dimensional flow problems within a sinusoidally undu-
lating channel utilizing a spectral method developed for the numerical simulation of time-
dependent Newtonian flows in a general two-dimensional flow geometry with one periodic
direction. The approach followed is based on a fully spectral, spatial representation of the
variables, a pseudoconformal mapping of the flow domain into a regular rectangle, cou-
pled to a standard semi-implicit (implicit/explicit) time integration of the resulting (upon
spatial discretization and the application of an influence matrix technique [43, 44]) ordi-
nary differential equations. The influence matrix technique is especially appropriate for the
development of the pressure boundary conditions under the incompressibility constraint
[45, 46]. Except for the mapping implementation, the solution technique follows closely
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the very successful time-splitting scheme originally proposed by Orszag and Kells [6], fol-
lowed by Moin and Kim [47] and later by others [48–52] in direct numerical simulation of
turbulent flows. The mapping is essential in order to preserve the computational efficiency
of the proposed numerical technique, and it can be carried out numerically in a very efficient
manner using fast Poisson solvers, since the required equations are separable [3]. However,
simply introducing the pseudoconformal mapping is not sufficient to guarantee an efficient
spectral solution to the flow problem, since the decomposition of the flow equations at each
time step results in nonseparable elliptic equations to which a fast spectral solver is not
directly applicable. In order for the implementation of the method discussed in this work to
fulfill all of the abovementioned requirements for accuracy and efficiency, the development
of an appropriate iterative solver satisfying these requirements is also necessary.

There has been considerable work related to the solution of nonseparable elliptic equations
in recent years. The general trend has been to focus on iterative solvers for use in direct
numerical simulations of flow problems in complex geometries. After Orszag’s influential
paper [13], considerable attention has been devoted to the implementation of preconditioned
iterative methods. Various iterative methods have been proposed as a basis for spectral
algorithms, such as minimal residual methods [53], conjugate gradient methods [13], and
multigrid methods [54, 55]. The proposed preconditioners have varied from incompleteLU -
factorizations to spectral solutions of similar/related problems. A general overview exists in
[3] and a brief summary of more recent papers in [17]. Recently, Hesthaven demonstrated
that by using spectral preconditioners it is possible to effectively precondition the advective
and diffusive operators [56]. For the purposes of this work, an efficient pseudospectral solver
for such equations, which is based on a spectrally preconditioned biconjugate gradient
algorithm, has been developed recently by the authors [17] and is implemented here. The
implementation of the solver involves the application of the influence matrix method [43, 44]
for the satisfaction of the divergence free condition. The influence matrix method is applied
within the preconditioner in a manner that does not affect the efficiency of the method, as
it is demonstrated in the following sections.

In summary, we have developed a new numerical technique which couples the accuracy
and efficiency of spectral methods with the advantages of conformal mapping between
the physical and computational domains. The pseudoconformal mapping and its numerical
implementation is discussed in Section 2. The numerical algorithm is presented afterwards
in Section 3. In order to validate the algorithm, as far as the direct numerical simulation
of solid boundary problems is concerned, steady and pulsating flows are investigated in
an undulating channel geometry, and peristaltic flow is considered in time-dependent,
deforming-boundary geometry in both laboratory and wave frames. The results from this
numerical study are presented in Section 4 along with the relevant discussion. This process
allows for a systematic increase of the problem difficulty with the ultimate (realizable)
goal of developing a highly accurate and equally efficient numerical method for the solu-
tion of time-dependent, free-surface flows with surfactants, which is to be discussed in a
forthcoming paper. Finally, the conclusions follow in Section 5.

2. PSEUDOCONFORMAL MAPPING WITH PSEUDOSPECTRAL IMPLEMENTATION

The physical domain under consideration involves one periodic direction(x) and one
non-periodic(y), with the lower boundaryy= 0 corresponding for simplicity to a symmetry
line. Therefore, the flow domain is defined through the specification of the upper boundary.
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This is assumed to be provided through a functiony(x, t), which is either known explicitly
or implicitly through a relationship between the time-derivativesdx/dt anddy/dt. The first
case is treated in Subsections 2.1–2.3 and the second, of relevance to free-surface problems,
in Subsection 2.4.

2.1. Governing Equations for the x, y Coordinates

An orthogonal mapping from the computational domain,(ξ, η), to the physical domain,
(x, y), is obtained by solving two Laplace equations in a rectangular domain,(0→ L ,
0→ H) for thex= x(ξ, η) andy= y(ξ, η) coordinates,

∇2x = 1

hξhη

[
∂

∂ξ
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are the scale factors. Numerically, these equations are solved spectrally within a uniform
grid along the periodic (ξ -coordinate) direction and a Gauss–Lobatto grid along the non-
periodic (η-coordinate) direction,

ξi = i L

Nξ
, η j = H

2

[
cos

(
jπ

Ny

)
+ 1

]
(i = 0, 1, . . . , Nξ , j = 0, 1, . . . , Nη), (4)

whereL , H are characterictic lengths along theξ, η-directions, respectively, andNξ , Nη
are the numbers of nodes in the designated directions.

Equations (1) and (2) are most easily solved numerically when an additional constraint
is specified for the conformal module,M , defined as the squared ratio of the scale factors:

M =
(

hξ
hη

)2

= constant. (5)

Thus the conformal module has a clear geometrical significance: it specifies the ratio of
the sides of a small area in the physical plane which is an image of a small rectangle in
the computational plane. When the constant in (5) is unity, the mapping is conformal. An
orthogonal system with non-unitM is not conformal by definition, but does trivially corre-
spond to a conformal system through a linear transformation of either one of the curvilinear
coordinates which incorporates the constant value of the cell aspect ratio [19]. Henceforth,
we shall call such a mappingpseudoconformal, corresponding through a suitable modifi-
cation of Eqs. (1), (2) based on the constraint (5) to the following pseudoconformal system
of equations

M
∂2x

∂ξ2
+ ∂

2x

∂η2
= 0 and M

∂2y

∂ξ2
+ ∂

2y

∂η2
= 0, (6)
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subject to appropriate boundary conditions. A crucial step allowing for a direct spectral
numerical calculation is that theξ andη variables separate in (6), which makes possible the
use of efficient Poisson solvers for the solution of the conformal system.

Two boundary conditions on the top surface are needed in order to find a solution for
this elliptic system. One condition comes from the boundary shape and the other condition
comes from the orthogonality condition. As mentioned in the Introduction, we illustrate the
application of the method to three different Newtonian flows in this paper. The first two,
flow in an undulating channel with a constant and time-periodic flow rate, are simpler cases
because they involve a stationary boundary. Thus, the mapping is time-independent and
may be solved a single time, outside of the main solution algorithm for the flow equations.
The other flow (peristaltic), involves time-dependent mapping which must be incorporated
into the solution algorithm and determined at each time step. The techniques employed for
obtaining the mapping in each case are outlined in the following subsections.

2.2. Boundary Conditions for a Prescribed Upper Surface

When the upper surface is specifieda priori as a given function ofx and the time,t ,

y = f (x, t), (7)

such a relationship can be directly used to specify one of the two needed boundary conditions
for the upper surface,η= 1. For example, for a stationary undulating channel,

f (x, t) = Hav[1− α cos(2πx/L)], (8)

whereHav(=H) is the average half-width of an equivalent straight channel andα is the
dimensionless amplitude of the undulation. The additional boundary condition is obtained
naturally from the orthogonality condition which ensures that the coordinate lines are per-
pendicular at each node. This orthogonality is guaranteed by the relationship(

∂x

∂ξ

)(
∂x

∂η

)
+
(
∂y

∂ξ

)(
∂y

∂η

)
= 0. (9)

This relationship in conjunction with Eq. (8) simplifies to a linear condition

∂x

∂η
= −∂ f

∂x

∂y

∂η
atη = 1. (10)

Similar conditions could, in general, be specified for the bottom boundary,η= 0. Alterna-
tively, for simplicity, we can use symmetry conditions there:

∂x

∂η
= 0 and y = 0 atη = 0. (11)

The distribution of the coordinates on the top surface is thus unspecified, so that these values
are determined by the mapping itself. Periodic conditions are used along theξ direction,
for xp ≡ x− ξ andy. All problems under consideration in this work involved channel flow
with a periodic flow direction, as dictated by the periodic nature of the boundary shape and
symmetry conditions at the centerline. However, the approach is general enough to enable
the relaxation of these assumptions in a straightforward fashion.
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2.3. Efficient Pseudospectral Solution of the x, y Coordinate Mapping

Based on the periodicity requirements, the spectral simulation uses a mixed Chebyshev/
Fourier spectral approximation: a Fourier series expansion along the periodic direction (x,
which is mapped toξ ) is combined with a Chebyshev series expansion along the non-periodic
direction (y, mapped toη). This corresponds to any given periodic variables, s= xp(≡x−
ξ), y,

s(ξ, η) =
Nξ /2−1∑

j=−Nξ /2

Nη∑
k=0

sjkei ( j/Nξ )(2π/Lξ )ξTk

(
2η

Lη
− 1

)
, (12)

where thesjk are the spectral coefficients,Tk denotes thekth Chebyshev function, and
Nξ , Nη are the number of modes present in theξ andη directions, respectively, withLξ
andLη representing the corresponding length scales. The total number of spectral modes
(unknowns) per variable,NT , is equal toNξ (Nη+ 1). As usual, the transition between the
physical and spectral domain can be performed efficiently using fast Fourier transforms
(FFTs) requiringO(NT log2 NT ) operations [3].

Given the availability of efficient direct Poisson solvers for Eqs. (6), the major difficulty
for the solution of the mapping coordinatesx, y arises from the coupling involved in the
specifications of the boundary conditions (8), (10) and the nonlinear constraint (5). This is
handled in a computationally efficient way according to the following scheme.

Equations (6) are solved iteratively using two nested iteration loops involving an expan-
sion in terms of basis functions̃xi , ỹi of the form

xp =
Nξ∑

i=1

fi x̃i and y =
Nξ∑

i=1

gi ỹi . (13)

The outer iteration begins by specifying an initial guess forM , after which the equations

M
∂2x̃

∂ξ2
+ ∂

2x̃

∂η2
= 0 and M

∂2 ỹ

∂ξ2
+ ∂

2ỹ

∂η2
= 0, (14)

are solved for each one of the basis functionsx̃i , ỹi , subject to boundary conditions

∂ ˆ̃xik

∂η
= 0 atη = 0 (15)

and

∂ ˆ̃xik

∂η
= δik atη = 1, (16)

for ˆ̃xik, whereˆ̃xik represents thekth Fourier transform, andδik is the Kronecker delta, and

ˆ̃yik = 0 atη = 0 (17)

and

ˆ̃yik = δik atη = 1 (18)
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for ˆ̃yik, where ˆ̃yik represents thekth Fourier transform. Note that with those boundary
conditions the physical mapping of the coefficientsfi andgi appearing in the expressions
indicated in Eq. (13) becomes

∂ x̂pk

∂η
= fk and ŷk = gk. (19)

The above statement, in conjunction with the boundary conditions (7) and (10), allows for
an efficient iterative algorithm for the specification offi andgi as follows: an initial guess
is provided (typically from a previous solution) which is then used in Eq. (13) to evaluate
the right-hand sides in Eqs. (7) and (10), which are then used in conjunction with Eq. (19)
to provide new values for the coefficientsgk and fk. The whole process is then repeated
until the coefficients do not change within machine accuracy. The converged values ofgk

and fk are then used to evaluate new estimates forM , which then are used to generate new
basis functions̃xk, ỹk, continuing this outer iteration untilM does not change, again within
machine accuracy.

Each iteration of the inner loop, as involving only the values ofx, y on the boundary,
is very fast. In addition, at the initial stages of the outer iteration, convergence needs only
to be satisfied partially (given the uncertainty inM) and a criterion equal to 10−3 times
the previous value in the change inM,1M , is adequate. The major workload is associated
with the solution of the basis functions and the evaluation ofM (of the orderO(N log2 N)),
which, however, does not spend too much time since it is found that in the cases investigated
in this work, the convergence of the outer loop is very fast, typically requiring no more than
10 to 20 iterations. By using this scheme with the two nested iterations, it was calculated
that the mapping subroutine was 25 times more efficient than if a direct linear iteration
scheme were used. Finally, we must note that in order to have an adequate mesh resolution,
more Fourier than Chebyshev modes are typically required. For example, in order to map
a wavy channel where the aspect ratio of its length to its half-width,L/Hav, is equal to
3 and for which the dimensionless amplitude of the undulation,α, is 0.45, one requires
more than 128 Fourier modes in order to see a decrease of 8 to 10 orders in the magnitude
of the spectral coefficients, with increasing wave number along the Fourier direction. The
required Chebyshev coefficients are less than 65. This is usually observed when the mapping
approaches the limit of becoming singular. Since the singularities appear first on the mapped
boundaries, the rate of convergence of the Fourier approximation is more sensitive and starts
decreasing before that of the Chebyshev approximation.

Figure 1 illustrates a typical case of mapping from the non-rectangular region to a simple
rectangular region for the stationary solid boundary problem. The coordinate lines tend
to be more closely spaced near concave segments and more widely spaced near convex
segments.

2.4. Efficient Solution for the Time Derivatives of the Coordinates

When the location of the upper surface is no longer knowna priori, but instead boundary
conditions are known which constrain the time derivatives of the mapping of the flow
boundary, the mapping coordinatesx= x(ξ, η, t) and y= y(ξ, η, t) are solved indirectly
through a numerical integration of their time derivatives. This requires evaluation of the
time derivatives ofx, y which is achieved by using the same nested iteration algorithm as
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FIG. 1. Mapping of the physical/flow domain to the computational domain.

described for the time-independent mapping. This time, though, one solves the equations

M
∂2

∂ξ2

(
∂x

∂t

)
+ ∂2

∂η2

(
∂x

∂t

)
= −∂M

∂t

∂2x

∂ξ2

and (20)

M
∂2

∂ξ2

(
∂y

∂t

)
+ ∂

2y

∂η2

(
∂y

∂t

)
= −∂M

∂t

∂2y

∂ξ2

for boundary conditions which are derivatives of Eqs. (8) and (10). Specifically, the condi-
tions imposed are

∂y

∂t
= ∂ f (x, t)

∂t
and

∂

∂η

(
∂x

∂t

)
= − ∂

∂t

(
∂ f

∂x

∂y

∂η

)
atη = 1 (21)

and

∂

∂η

(
∂x

∂t

)
= 0 and

∂y

∂t
= 0 atη = 0. (22)

The only change compared to the algorithm that calculates the values of thex, y coor-
dinate mapping is that there is an additional iteration loop that corrects for the value of the
term∂M/∂t which is unknown and must be solved for as well. Also, the right-hand sides
in Eqs. (20) are calculated iteratively based on the previous guesses as well. Initial guesses
for succeeding time steps are evaluated using first-order continuation.
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This approach was tested based on a second order time integration method for the new
values ofx, y in the case of an undulating channel with a moving wall (at a constant velocity)
against the solution of the same problem in a translating frame at the boundary’s velocity.
In this frame of reference the solid boundary is stationary. The results show differences of
the same order as the error of the time integration, which implies that the calculation of the
time derivatives has a significantly smaller error.

3. EFFICIENT SPECTRAL NUMERICAL SIMULATION

3.1. Mathematical Model Equations

The objective of this paper is to present an efficient spectral numerical method for the
solution of time-dependent flows in moderately deformed geometries. We illustrate its ap-
plication in smoothly deformed channels. Concisely, the method involves the incorporation
of a traditional time-splitting implicit/explicit integration of the full Navier–Stokes equation
in time, implemented in an orthogonal (pseudoconformal) curvilinear coordinate system
and utilizing an efficient elliptic solver to integrate the implicit Poisson/Helmholtz prob-
lems which arise at each time step. Thus, the time step solution and computational domain
mapping algorithms are closely coupled.

The starting point is the rotational form of the Navier–Stokes equation for incompressible
flow and the continuity equation, which in dimensionless form are

∂v
∂t
+ ω× v = −∇p+ 1

Re
∇2v, (23)

∇ · v = 0, (24)

wherev is the dimensionless velocity;p is a dimensionless effective pressure incorporating
the kinetic energy contributionp= p̄+ (v2)

2 ,wherep̄ is the dimensionless pressure;ω is the
dimensionless vorticity vector field;Reis the Reynolds number, defined as asRe=UH/ν,
whereν is the kinematic viscosity of the fluid, andU, H the velocity and length scales. Note
that in Eq. (23),p is non-dimensionalized with respect to the inertial scaleρU2. The velocity
scale is different in the three flows presented in this paper and its value will be clarified for
each case, as well as the pressure difference,1P, betweenξ = 0 andL ,1L ≡ L.

The boundary conditions for these equations are as follows. As far as thex-direction is
concerned, we have periodic conditions forv and pp≡ p− 1P

1L ξ :

v|ξ=0 = v|ξ=L and
∂v
∂ξ

∣∣∣∣
ξ=0

= ∂v
∂ξ

∣∣∣∣
ξ=L

, (25)

pρ |ξ=0 = pρ |ξ=L and
∂pρ
∂ξ

∣∣∣∣
ξ=0

= ∂pρ
∂ξ

∣∣∣∣
ξ=L

. (26)

For the non-periodic directiony, on the solid surface the velocity boundary conditions are
Dirichlet type and are given explicitly as a functionvbnd,

v = vbnd atη = 1. (27)

Their numerical values differ depending on the problem under consideration. Symmetry
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conditions are applied along the bottom surface,

∂vξ

∂η
= 0 and vη = 0 atη = 0, (28)

wherevξ , vη are the covariant components of the velocity vector field along the coordinates
ξ, η in the computational domain. The pressure in incompressible flows serves as a variable
that ensures the satisfaction of the continuity equation and its boundary conditions are
imposed through the influence matrix method [43, 44].

Note that for the solution of (23) and (24) in a pseudoconformal curvilinear system,
the equations are scaled by nonlinear mapping coefficients which introduce coupling and
necessitate the use of iterative solvers to solve the resulting nonseparable elliptic equations
at each stage of the integration in time. We have previously worked on developing an
efficient and robust iterative spectral solver for nonseparable elliptic equations [17]. This
solver was implemented in the integration scheme and will be described in the following
sections.

3.2. Implementation of an Explicit/Implicit Time Integration Scheme
in Pseudoconformal Curvilinear Coordinates

The first step involves the time integration algorithm, where a mixed explicit/implicit
method was implemented. It requires taking into consideration the accuracy as well as
the stability of each of its components. A fully implicit method would be accuracy rather
than stability limited; the associated disadvantages are the necessity of a nonlinear solver
and treatment of nonsymmetric and anisotropic matrix operators that typically require
memory and work intensive direct solvers [42]. However, in this work we were aiming
for an algorithm which exhibits almost linear scalability,O(NT log2 NT ), whereNT is the
total number of variables, and we developed it along the lines of previous work on direct
numerical simulation of time-dependent Newtonian flows [6, 47–52].

The time integration of Eq. (23) was accomplished by using an Adams–Bashforth second-
order explicit method for the nonlinear terms and an Adams–Moulton second-order implicit
method for the linear terms. Specifically, after integrating the Navier–Stokes equation,

vn+1− vn = −
∫ tn+1

tn

ω× v dt −
∫ tn+1

tn

∇p dt+
∫ tn+1

tn

1

Re
∇2v dt, (29)

the following vector equation was obtained

(∇2v)n+1− 2Re

1t
vn+1− 2Re∇n+1 pn+1/2

= −2Re

1t
vn − (∇2v)n − Re

[
(ω× v)n−1− 3(ω× v)n

]
. (30)

These equations were evaluated in covariant form in the pseudoconformal curvilinear coor-
dinate system, as described in Appendix A. Each component of Eq. (30) was multiplied by
(h2
ξ /M)n+1 in order for it to take the form of a generalized Helmholtz equation, which was

solved with the efficient solver presented in [17]. In addition, there exist extra terms in (30)
when the mapping is time-dependent. Using various identities for generalized orthogonal



               

530 DIMITROPOULOS ET AL.

curvilinear coordinate systems, we arrived at the following form for the equations of motion,
in covariant components (where substitutingψ with ξ or η produces theξ or η component
of the momentum equation, respectively),

1

Mn+1

∂2vn+1
ψ

∂ξ2
+ ∂

2vn+1
ψ

∂η2
− 2Re

1t

(
h2
ξ

M

)n+1

vn+1
ψ − 2Re

(
h2
ξ

M

)n+1
∂pn+1/2

∂ψ

= 3(ψ)n+1+
[
vψ

(
1

M

∂2 ln hξ
∂ξ2

+ ∂
2 ln hξ
∂η2

)]n+1

+
(

h2
ξ

M

)n+1[
−2Re

1t
vn − (∇2v)n

]
ψ

−Re

(
h2
ξ

M

)n+1

[(ω × v)n−1− 3(ω × v)n]ψ, (31)

where

3(ψ) ≡
2
( ∂vξ
∂η
− ∂vη

∂ξ

) ∂ ln hξ
∂η

, ψ = ξ
− 2

M

( ∂vξ
∂η
− ∂vη

∂ξ

) ∂ ln hξ
∂ξ

, ψ = η.
(32)

Continuity was imposed indirectly through the solution of a Poisson equation that was
obtained by constructing the divergence ofvn+1, which was then set to zero, from the com-
ponents of the time discretized Navier–Stokes equation and multiplying with(h2

ξ /M)n+1. In
this way, we took advantage of the pseudoconformal character of the mapping, specifically
the constant value of the conformal moduleM (ratio of the scale factors). The corresponding
equation in a compact form is

1

Mn+1

∂2 pn+1/2

∂ξ2
+ ∂

2 pn+1/2

∂η2

≡
(

h2
ξ

M

)n+1

{∇n+1 · (∇n+1 pn+1/2)}

=
(

h2
ξ

M

)n+1{ 1

2Re
∇n+1 · (∇2v)n+1+ 1

2
∇n+1 · [(ω × v)n−1− 3(ω × v)n]

− 1

2Re
∇n+1 ·

[
−2Re

1t
vn − (∇2v)n

]}
. (33)

A comprehensive list of the formulae appearing in the above equations can be found in
Appendix A.

Equations (31) and (33) had to be solved simultaneously due to the coupling induced
through the curvilinear coordinate system. When a solution for the velocities and the pressure
was obtained, the values were updated and the time was advanced. Details concerning the
application of the iterative biconjugate gradient solver and the imposition of the boundary
conditions are discussed in the following sections.
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3.3. Development of an Iterative Spectral Solver for a Set of Nonseparable
Stokes-Type Equations

Equations (31) and (33) can be considered in the following general form during the
solution process,

1

Mn+1

∂2vn+1
ψ

∂ξ2
+ ∂

2vn+1
ψ

∂η2
− 2Re

1t

(
h2
ξ

M

)n+1

vn+1
ψ − 2Re

(
h2
ξ

M

)n+1
∂pn+1/2

∂ψ

= [RHS(v; t = tn+1)]ψ + [RHS(v; t < tn+1)]ψ, (34)

1

Mn+1

∂2 pn+1/2

∂ξ2
+ ∂

2 pn+1/2

∂η2
= RHS(p; t = tn+1)+ RHS(p; t < tn+1), (35)

where the terms RHS(v; t = tn+1), RHS(v; t < tn+1), RHS(p; t = tn+1), and RHS(p; t <
tn+1) denote the groups of terms on the right-hand sides of the velocity and pressure equa-
tions, calculated before and during the current time step and are defined in Appendix B.

The solver used is the outgrowth of the one that was developed in a previous publication
[17] to solve nonseparable elliptic equations re-cast in the form of a modified Helmholtz
equation with a non-constant coefficientg(ξ, η) in a rectangular domain,

∂2Q

∂ξ2
+ R

∂2Q

∂η2
− g(ξ, η)Q = f (ξ, η), (36)

where f (ξ, η) is an arbitrary function,R a constant, andξ, η the coordinates of the rectan-
gular computational domain. The solution method developed here consists of a spectrally
preconditioned biconjugate gradient algorithm due to Sleijpen and Fokkema [57], which is
a generalization of an older algorithm introduced by Van der Vorst [58]. The preconditioner
is an iterative algorithm due to Concus and Golub [59], and is applied in conjunction with
a fast direct spectral Poisson/Helmholtz equation solver [3] for the repeated solution of a
Helmholtz problem with constant coefficients, without it being necessary to reach full con-
vergence (full convergence is not possible with the Concus and Golub algorithm in many
cases [17]): (

∂2

∂ξ2
+ R

∂2

∂η2
− K

)
Qi+1 = (g(ξ, η)− K )Qi + f (ξ, η). (37)

In Eq. (37), the superscripti denotes values at successive iterations andK is a free parameter,
which usually has the so-called min-max value:

1

2
{min[g(ξ, η)] +max[g(ξ, η)]}. (38)

If desired, the parameterK can be optimized for higher rates of convergence.
This iterative solver exhibited almost linear scalability, requiring approximately

O(NT log2 NT ) operations (NT being the total number of spectral modes), since the most
computationally demanding routines are FFTs. Comparing the number of required FFTs
with that for a conventional pseudospectral code applied for separable equations where a
fast solver can be used, one finds that there exists a larger prefactor, of the order of 10–100,
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and thus, it is not as efficient. However, because of the use of an efficient preconditioner,
the number of iterations is always of order 10 and therefore, the value of the prefactor
never becomes very big. For the problems addressed here, the discretized equations are not
separable and a direct solver cannot be used. For small problems it is possible to use a direct
solver in association with a conventional pesudospectral method [60–62]. Our experience
is that the present code becomes quickly more efficient for meshes larger than 32× 33.
Spectral element methods can also potentially exhibitO(N log2 N) performance, provided
that an effective preconditioning of the final equations is available. Unfortunately, even in
that case the prefactor is likely to be big as there is no predictable way to achieve a fast
convergence. The proposed algorithm, although it does not have the geometric flexibility
of methods using domain decomposition, has the advantage of predictable efficiency and
high accuracy within its domain of applicability, which is quite broad in its own right.

The proposed algorithm is best suited for use in time-dependent direct numerical simu-
lations, especially when extended to three dimensions, which can be easily accommodated
if the third dimension is neutral,i .e., Cartesian (with no mapping) and periodic. In that
case, one can still map a domain where the boundaries vary along one of the two periodic
dimensions, and use the same principles discussed in [17] to create an algorithm which uses
iteratively FFTs and a direct solver for separable elliptic equations. The computational load
will be againO(NT log2 NT ) with a relatively small increase in the prefactor compared to
the two-dimensional case, since now a few more conjugate gradient iterations are required
for convergence of the Stokes-type problem at each time step. However, in three dimensions,
the performance of the method is likely that it will overtake that of other implementations
not exhibiting almost linear scalability much sooner than in two dimensions due to the
much faster increase of the number of unknowns with increasing mesh resolution along
each individual direction.

The solution procedure resulting from the extension of this iterative solver to the Stokes-
like system of Eqs. (34), (35) consists of the following steps. First, the residuals of Eqs. (34)
and (35) are constructed spectrally and are solved iteratively within the preconditioner in
the form{

1

Mn+1

∂2vn+1
ψ

∂ξ2
+ ∂

2vn+1
ψ

∂η2
− 2Re

1t

(
k

M

)n+1

vn+1
ψ − 2Re

(
k

M

)n+1
∂ pn+1/2

∂ψ

}i+1

=
{

2Re

1t

(
h2
ξ

M
− k

)n+1

vn+1
ψ + 2Re

(
h2
ξ

M
− k

)n+1
∂ pn+1/2

∂ψ

+ [RHS(v; t = tn+1)]ψ + [RHS(v; t < tn+1)]ψ

}i

, (39)

{
1

Mn+1

∂2 pn+1/2

∂ξ2
+ ∂

2 pn+1/2

∂η2

}i+1

= {RHS(p; t = tn+1)+ RHS(p; t < tn+1)}i , (40)

where the superscripti denotes the iteration number to which the values of the variables
used to calculate the various terms correspond, andk= 1

2[min(h2
ξ )+ max(h2

ξ )]. As before
[17], this iterative procedure is only carried out for a limited number of iterations (typically
2–4), and the iterative process does not even need to converge for the preconditioner to
work efficiently.
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The boundary conditions for the pressure were imposed through the influence matrix
technique [43, 44]. According to this technique, the pressure boundary conditions are im-
posed implicitly through the requirement that the divergence of the velocity field at then+ 1
time step be zero on the boundaries. This was a necessary and sufficient condition, arising
naturally from the construction of the divergence of Eq. (30) (and post-multiplication with
(h2
ξ /M)n+1) and the substitution of Eq. (33). The equation obtained is

1

Mn+1

∂2

∂ξ2

(
h2
ξ

M
∇ · v

)n+1

+ ∂2

∂η2

(
h2
ξ

M
∇ · v

)n+1

− 2Re

1t

(
h2
ξ

M
∇ · v

)n+1

= 0. (41)

One notices immediately that the solution of this Helmholtz equation is zero if and only if
the divergence of the velocity is zero on the boundary.

In order to apply the influence matrix technique efficiently, it was used within the precon-
ditioner. In fact, one of the advantages of the chosen preconditioner that led to its selection
(apart from the efficiency and accuracy of the resulting iterative solver), was that it can
accommodate an efficient application of the influence matrix technique. Specifically, due to
the coupling of the Fourier modes arising from the non-constant coefficient of the Helmholtz
equations arising from (31), it would be necessary to apply this techniqueNξ times (the
number of Fourier modes) and solve anNξ × Nξ linear system to find the correct coefficients
that mandate the pressure boundary conditions. However, a careful look at Eq. (37) revealed
that when one performs the transformation described (which is essentially a linearization)
to Eqs. (31) and (33), leading to (39) and (40), the resulting equations have constant coeffi-
cients and the Fourier modes are decoupled. Therefore, one could proceed in applying the
influence matrix technique as in the case where the model equations were separable and
fast direct spectral solvers for Helmholtz equations were utilized [51].

3.3.1. Moving Solid Boundary: Time-Dependent Mapping.To accommodate a time-
dependent mapping, the momentum equations had to be modified with some correcting
terms which correspond to the change in time of the covariant basis vectors of the generalized
orthogonal curvilinear system used for the mapping between the physical and computational
domains. When such a case is considered, which would arise for example for free-surface
flows or peristaltic flows when viewed in the laboratory (observer) frame, the proposed
algorithm can adapt to the new demands efficiently using the time derivatives calculated
in Subsection 2.4. The momentum equations now have some additional terms which are
treated as nonlinear, through an Adams–Bashforth integration scheme. The major advantage
of the proposed method is that by allowing the mapping of the surface deforming in time to
be efficiently evaluated using the same Poisson solvers as with the mapping for a stationary
surface and by incorporating explicitly the additional terms into the flow equations at every
time step, a computationally efficient and highly accurate numerical simulation of moving
boundary problems can be developed. The relevant set of equations in this case becomes

1

Mn+1

∂2vn+1
ψ

∂ξ2
+ ∂

2vn+1
ψ

∂η2
− 2Re

1t

(
h2
ξ

M

)n+1

vn+1
ψ − 2Re

(
h2
ξ

M

)n+1
∂ pn+1/2

∂ψ

= 3(ψ)n+1+
[
vψ

(
1

M

∂2 ln hξ
∂ξ2

+ ∂
2 ln hξ
∂η2

)]n+1

+
(

h2
ξ

M

)n+1[
−2Re

1t
vn − (∇2v)n

]
ψ

−Re

(
h2
ξ

M

)n+1

[(b+ ω × v)n−1− 3(b+ ω × v)n]ψ, (42)



                

534 DIMITROPOULOS ET AL.

whereψ = ξ, η,Λ(ψ) has been defiend in Eq. (32), and

1

Mn+1

∂2 pn+1/2

∂ξ2
+ ∂

2 pn+1/2

∂η2
= 1

2Re

(
1

h2
ξ

)n+1( 1

M

∂2 ln hξ
∂ξ2

+ ∂
2 ln hξ
∂η2

)n+1

×
[
2

(
vξ
∂ ln hξ
∂ξ
+ Mvη

∂ ln hξ
∂η

)
− vξ

M
− vη

]n+1

+
(

h2
ξ

M

)n+1{1

2
∇n+1 · [(b+ω × v)n−1− 3(b+ω × v)n]

− 1

2Re
∇n+1 ·

[
−2Re

1t
vn − (∇2v)n

]}
, (43)

whereb corresponds to the vector respesenting the additional terms whose covariant com-
ponents are

bi =
[
∂vi

∂u j
− vk0

k
i j

]
duj

dt
− vkgk · ∂gi

∂t

∣∣∣∣
u j

, (44)

wherei, j, k are dummy indices corresponding to the coordinatesξ andη, gi andgk are
the covariant and contravariant basis vectors, respectively, and0k

i j represents a Christoffel
symbol for the curvilinear coordinate system (see Appendix A for detailed expressions).

3.4. Alternative Formulation Using the Divergence-Free Condition Explicitly

An alternate route of applying the incompressibility constraint in the equations was also
examined. In this procedure, the divergence of the velocity field is imposed as one of the
equations to be solved instead of the pressure equation. The implication of this change is that
within the preconditioner, where the influence matrix technique is applied, the equation for
the pressure is formed directly from the preconditioner velocity equations. The equations
for the velocity are the same as (34), whereas the pressure equation becomes

1

Mn+1

∂2 pn+1/2

∂ξ2
+ ∂

2 pn+1/2

∂η2
= 1

2ReM

∂

∂ξ
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ξ

∂ξ2
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M
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ξ

)n+1∂2vn+1
ξ

∂η2
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1t
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ξ − 2Re

1t

(
M

h2
ξ
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[RHS(v; t = tn+1)]ξ

− 2Re

1t

(
M

h2
ξ

)n+1

[RHS(v; t < tn+1)]ξ

}

+ 1

2Re
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∂η
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η

∂ξ2
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M
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ξ

)n+1∂2vn+1
η
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1t
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1t
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M
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ξ
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[RHS(v; t = tn+1)]η

− 2Re

1t
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M
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ξ
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[RHS(v; t < tn+1)]η

}
. (45)
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This formulation was found to result in behavior akin to the simulation method discussed
in the previous sections, but it required a larger number of iterations to converge for each
time step than the previous, pressure equation formulation. As a result, the pressure equation
formulation was utilized in all the applications discussed in the results section below.

4. NUMERICAL RESULTS

The numerical scheme was validated by implementing it in various flow problems exam-
ined in the literature and reproducing their results. We examined three different problems,
the problem of flow in an undulating channel where a steady state is attained, the problem of
oscillatory flow in an undulating channel, and finally peristaltic flow, where the sinusoidal
boundary can be considered to be translating with constant velocity along the flow direction
x. By comparing the results with those in the literature, we demonstrate the validity and
accuracy of our approach.

4.1. Steady Flow in an Undulating Channel

We performed simulations of flow in an undulating channel, where we integrated the
equations in time to reach some of the steady state solutions reported by Nishimura and
co-workers [30–32], who used a finite element method and the streamfunction-vorticity
formulation for the flow equations. We implemented the algorithm where the volumetric
flowrateQ was specified. The algorithm can be also implemented for a specified pressure
drop across the channel as the driving force. The boundary conditions for the velocity at
the stationary top boundary are non-slip. Thus, we have two Dirichlet conditions where
the velocity components are required to vanish. The Reynolds number in our simulations is
defined asRe≡ Q/ν, where the flowrate is given by the relationQ= Havuav, with uav being
the average velocity defined by the imposed flowrate and the length scale, which is equal
to the average channel half-widthHav, taken as unity. The Reynolds number in our work is
equal to half the value of that in the work by Nishimuraet al. [30], which we denote with
ReNS. We performed calculations up toRe= 150, which corresponds toReNS= 300, and is
very close to the region where the flow has a transition to turbulence due to unsteady vortex
motion, and where three-dimensional simulation is required(ReNS= 350). The amplitude
of the undulation of the channelα is equal to 7/13 and the dimensionless channel lengthL
is 56/13. As far as the resolution of the simulations is concerned, we used three different
meshes. Initially the simulations were carried out with a mesh consisting of 80 Fourier and
33 Chebyshev modes; we repeated with a 64× 65 mesh and finally used a 128× 65 mesh.
The time step used was 5× 10−4 dimensionless units.

In Table I, we list the calculated values of the friction factorf , defined asf = Hav1P/L,
where1P/L is a dimensionless pressure drop per unit length (scaled in inertial units). Since
Hav= 1, f is equal to1P/L. We obtained values of the friction factor forRe= 0.5, 10,
50, 150. The values for the most refined mesh are plotted in a logarithmic plot in Fig. 2 to
facilitate a comparison with Fig. 7 in [30]. It can be seen that there is quantitative agreement
and that the main characteristic, which is a change in the slope aroundReNS= 15, is captured.
As a side note, we should mention that the flowrates corresponding to inertialess flow with
various amplitudes of undulation were found in complete agreement with those resulting
from very accurate pseudospectral calculations [62], up to all five significant digits reported
in that work.
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TABLE I

Calculated Friction Factors, f , at Various Reynolds Numbers

and Mesh Sizes for Steady Flow in an Undulating Channel

Calculated friction factorf
Mesh size

Re 80× 33 64× 65 128× 65

0.5 19.394439 19.394440 19.394440
10 1.060200 1.060065 1.060062
50 0.290946 0.290945 0.290943

150 0.116150 0.117656 0.117623

Note.The amplitude of undulationα is 7/13 andL/Hav= 56/13.

In Fig. 3, we show the calculated wall vorticity profiles at various Reynolds numbers
(Re= 10, 50, 150). We have also included the profiles from the simulations in the literature
[30]. A comparison is rather favorable since we can see that there is quantitative agreement.
There are some differences for the high Reynolds number data. In addition, in all cases
the peak of the vorticity is calculated to be located a little before the end of the channel,
whereas for the data from [30] it is shown to be at the end of the channel. By observing
Fig. 10 in [30], it can also be seen that the experimental value of the vorticity at the end
of channel is also slightly less than their predictions. This is also inferred from the results
in [31], where they have captured the peak of the wall vorticity before the end of the
channel for oscillatory flow (Figs. 5–8 in [31]), and also measured it in experiments (Fig. 8
in [31]).

Finally, for steady flow in an undulating channel we have also performed simulations
for a high Reynolds number case and another with high surface deformation in order to
provide a better picture of the capabilities of the method. For these simulations, we imposed
an external pressure drop, equal to1P/1L =−1/Re, to drive the flow. In the first case

FIG. 2. Calculated friction factor,f , at various Reynolds numbers for steady flow in an undulating channel.
The amplitude of undulation,α, is 7/13, L/Hav= 56/13, and the mesh size is 128× 129.
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FIG. 3. Calculated wall vorticity profiles at various Reynolds numbers for steady flow in an undulating
channel. The amplitude of undulation,α, is 7/13 andL/Hav= 56/13. The flow is from left to right.

the amplitude of the undulation of the channelα is 0.15, the dimensionless channel length
L/Hav is 6.25, the Reynolds numberReis 1000, and the time step is equal to 10−3. Here,
we are able to capture the flowfield for a mesh as small as to 32× 33 due to the small
deformation. Results with a more refined mesh (64× 65) showed no changes other than
in the truncation error (the calculated flowrate is equal to 0.27390523). This is due to
the fact that the mesh is resolved extremely well and the spectral coefficients decay very
rapidly to zero for this small deformation, making the small mesh more than sufficient. The
magnitudes of 2/3 of the Fourier modes corresponding to the first Chebyshev mode for
the velocity and thex-coordinate of the mesh are plotted in Fig. 4, where one can verify the
exponential convergence of the method.

In the second case,α= 0.45, L/Hav= 3,Re= 10,1t = 10−3, a more refined mesh was
necessary due to the large deformation. Simulations with meshes of 64× 65, 128× 129,
and 256× 65 revealed that 65 Chebyshev and at least 128 Fourier modes are required for
an accurate solution of the mapping which results in a solution accurate to 7 decimal places
for the flowrate (see Table II). Figure 5 shows the magnitudes of the Fourier coefficients for
this case. One notices the larger number of modes needed to achieve values of the coeffi-
cients smaller than 10−10 for the mapping coordinates, in contrast to what is necessary for
the velocity components. We should emphasize that these two cases demonstrate that the
method described in this work can accommodate high Reynolds flows with smaller meshes
than flows with high surface deformations, and thus, there is a strong motivation for the use
of superparametric mapping. In this way, a relatively large number of spectral modes can be
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TABLE II

Calculated Flowrate for Various Meshes for

Steady Flow in an Undulating Channel

Mesh size Flowrate

64× 65 0.13131848
128× 129 0.13131907
256× 65 0.13131904

Note. The amplitude of undulation,α, is 0.15,
L/Hav= 3, andRe= 10.

FIG. 4. Steady flow in an undulating channel. Magnitudes of 2/3 of the Fourier modes corresponding to the
first Chebyshev mode for the velocity components (a) and thex-coordinate of the mapping (b) at different mesh
sizes.Re= 1000, the amplitude of undulation,α, is 0.15 andL/Hav= 6.25.
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FIG. 5. Steady flow in an undulating channel. Magnitudes of 2/3 of the Fourier modes corresponding to the
first Chebyshev mode for the velocity components (a) and thex-coordinate of the mapping (b) at different mesh
sizes.Re= 10, the amplitude of undulation,α, is 0.45, andL/Hav= 3.

used only for the mapping problem, making the solution of the flow problem still possible
without the use of an excessively large mesh. This is especially important for free-surface
flows and three dimensional calculations, where the computational cost associated with the
solution of the flow problem is of major significance.

4.2. Oscillatory Flow in an Undulating Channel

The method was also implemented for oscillatory flow in an undulating channel, where
we were imposing a sinusoidally varying flowrate. In this way we can validate the method
in problems where there exists a transient driving force, leading to a stationary rather than
a steady state. Our benchmark problem was taken from a paper by Nishimuraet al. [34].
The geometry of the undulating channel is the same as in the steady flow problem exam-
ined previously. The characteristic parameters defining the flow are the Reynolds number
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FIG. 6. Oscillatory flow in an undulating channel. Streamline patterns forRe= 250 andSt= 0.034 at two
different times,t/T ≈ 0.45 and 0.5. The amplitude of undulation,α, is 7/13, L/Hav= 56/13, and the mesh size
is 32× 17 modes. The flow is from left to right. Dashed lines denote negative contour values.

and the Strouhal number. The Strouhal number is defined asSt= f H2
av(1− α)2/2Qmax,

where f is the frequency of oscillation,Hav the average half-width of the channel,α the
amplitude of the undulation, andQmax is the maximum flowrate. The Reynolds number
is defined asRe= Qmax/ν. Finally, the flowrate depends on time through the relationship
Q(t)= Qmaxsin(2π f t). With these definitions, our values forStandRecoincide with those
in [34].

Our test case corresponds toSt= 0.034 andRe= 250. Since in [34], streamfunction plots
were mainly used with no data for specific values of the streamlines, for a series of runs we
focused on a less quantitative level than in the steady flow case and used a coarser mesh
(32 Fourier modes by 17 Chebyshev modes). The time step1t was 5× 10−4 dimensionless
units. With this resolution we could integrate the equations in time until we reached the
stationary state observed in such flows faster, but we also retained enough accuracy to
capture the characteristics of the flow field. As can be seen from Fig. 6, where we have two
plots of the streamlines at different times, the flow-field starts separating into three distinct
regions until a maximum separation is reached. These two snapshots agree well with the
corresponding plots in Fig. 2 from [34]. Figure 7 shows mesh convergence of the algorithm
for a finer mesh 128× 65 and the same time step as before, from another series of runs. We
present a succession of contour plots at different times, where we have noted the values for
the streamfunction. The results fort/T = 0.5 coincide with the results in the literature [34].

4.3. Examination of Peristaltic Flow in Two Reference Frames

The most interesting benchmark problem for us was the examination of peristaltic flow.
Peristaltic flow arises from the propagation along the length of the channel of a progressive
wave, resulting from the contraction and expansion of an extensible boundary of the channel.
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FIG. 7. Oscillatory flow in an undulating channel. Streamline patterns forRe= 250 andSt= 0.034 at three
different times,t/T = 0.5, 0.516, and 0.596. The amplitude of undulation,α, is 7/13, L/Hav= 56/13, and the
mesh size is 128× 65 modes. The flow is from left to right. Dashed lines denote negative contour values.

Such flows are abundant in the human body, where the phenomenon of peristalsis drives the
mixing and transport of fluids. In addition, peristaltic pumping of fluids, which is a means
of sanitary transport (since there is no contact of fluid with mechanical parts of the pump),
has been utilized in diverse applications ranging from biomedical (i .e., circulation of blood
within artificial organs) to classical chemical industry processes, like the transport of slurries
and corrosives [37]. In addition to the significance of such applications, peristaltic flow from
a numerical standpoint provides us the opportunity to test our method for unsteady flows,
when we formulate the problem in the laboratory (observer frame). In addition, we can use
only the time-dependent mapping solution, assuming that we do not know the location of
the surfacea priori, which leaves us with a problem very close to what we will have when
considering time-dependent free-surface flows with this numerical scheme.
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FIG. 8. Pressure contoursRe= 5, α= 0.4, L/Hav= 5, and1P/1L = 0 in peristaltic flow calculated in the
wave frame. The peristaltic wall (upper boundary) moves from left to right.

Specifically, we considered as before a two-dimensional channel with a moving sinusoidal
top boundary. This so-called peristaltic wall of the channel is defined by the following
equation for its heighth,

h(x, t) = Hav

{
1− α cos

[
2π

L
(x − ct)

]}
, (46)

whereHav is the average half-width of the channel,α is the dimensionless amplitude of
the undulation,L is the channel’s length, andc is the velocity of propagation. Aty= 0 we
imposed again symmetry conditions.

This problem can be considered steady when formulated in a frame moving with constant
velocityc (wave frame) through a Gallilean transformation. In the wave frame, the peristaltic
boundary is stationary and the top boundary is given by Eq. (8), and the only thing that
changes are the velocity boundary conditions. In fact, all studies so far have been done
in the wave frame. In the wave frame we solved a problem from [37] to test the method
for non-zero boundary conditions. Here we define our Reynolds number asRe= cHav/ν,
which is five times larger than the corresponding Reynolds number,ReTP, in [37]. The
geometry of the channel is defined by the parametersα= 0.4 andL/Hav= 1. The resolution
of the computational mesh was 64 Fourier and 33 Chebyshev modes. The time step was
10−3 dimensionless units. We performed runs atRe= 0.5, 5, 50(ReTP= 0.1, 1, 10), with no
pressure drop across the channel, to reproduce the results in Figs. 6, 12, 13 from [37] which
we present in Figs. 8, 9, and 10. It can be seen that there is almost full quantitative agreement,
the only minor differences being at a few points close to the boundary. It is reasonable to

FIG. 9. Longitudinal velocity profiles forRe= 5, α= 0.4, L/Hav= 5, and1P/1L = 0 in peristaltic flow
calculated in the wave frame. The peristaltic wall (upper boundary) moves from left to right.
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FIG. 10. Pressure distributions along the peristaltic wall for variousRe and α= 0.4, L/Hav= 5, and
1P/1L = 0 in peristaltic flow calculated in the wave frame. The peristaltic wall (upper boundary) moves from
left to right.

assume that our higher-order spectral method is more accurate than the finite-difference
scheme in [37].

After the method was validated in the wave frame the final step was to validate it in
the laboratory frame. Here we used Eqs. (42) and (44). In addition, we used the mapping
to obtain only the derivatives of the coordinatesx, y. The values ofx, y were calculated
through explicit second-order Adams–Bashforth integration. We could also have used a
more accurate scheme like Runge–Kutta, since in this case the integration of the derivatives
of the coordinates does not affect the time-discretization of the Navier–Stokes equations.
There were two issues to examine. The first issue was to see whether the laboratory frame
integration of the solution in the wave frame is stable (Run A). Secondly, we wanted to see
if the method will converge to the correct solution starting from a different initial velocity
field (Run B). We chose to perform a run atRe= 1, α= 0.1, L/Hav= 56/13, and1t = 10−3

in this case. We chose a smaller amplitude in order to have a more accurate solution of the
mapping with the same mesh than before, so that we could see whether the difference in the
solutions is dominated by the integration of the coordinates and we get a method exhibiting
second-order accuracy in time. The smallerRe resulted in smaller integration times. In
Fig. 11 we have plotted the flowrate in time obtained from these two runs. The negative
value is because we have a net flow from right to left. It is evident that they converge
nicely on each other and that both are stable. Depending on time step used (10−3 and 10−4),
we obtained agreement to 6 and 8 digits, respectively, with the wave frame solution, for
which we know exactly the values ofx, y. This implies that the accuracy with which we
know the coordinates dominates the error in the method. This is natural, since we have
used extensively identities of the orthogonality of the mapping. However, since this is an
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FIG. 11. Demonstration of convergence (Run B) and stability (Run A) of the algorithm in the laboratory
frame, for peristaltic flow withRe= 1, α= 0.1, L/Hav= 56/13, and1P/1L = 0. The peristaltic wall (upper
boundary) moves from left to right.

efficient O(N log2 N) technique, we can afford to go to larger meshes and solve problems
with large surface deformations and higher Reynolds numbers more easily than most other
numerical schemes.

5. CONCLUSIONS

We have developed and verified a numerical scheme for solving spectrally two-dimen-
sional, time-dependent flow problems in moderately complex geometries. This method ex-
hibits almost linear scalability and exponential convergence. It uses an orthogonal mapping
algorithm, an efficient and robust iterative solver, and the influence matrix method for sat-
isfying the incompressibility condition. It is easily extendible to three-dimensional and/or
free-surface flows with or without surfactants. In addition, the algorithm can be parallelized
in a straightforward fashion. Thus, it provides a unique new computational tool for the
calculation of complex multi-dimensional and time-dependent flows.

APPENDIX A: PSEUDOCONFORMAL CURVILINEAR COORDINATE SYSTEM

In this appendix, the expressions of the various terms entering the model equations
are presented for a generalized orthogonal curvilinear and time-dependent coordinate sys-
tem. The notation used follows the conventions in [63] as far as both operators (gradi-
ent, covariant derivative, divergence, Laplacian, curl,etc.) and vector components. For
an arbitrary vector,c, its covariant components are respesented by lowered indicesci

and its contravariant components by raised indicesci , where i is an arbitrary dummy
index. When necessary, the Einstein summation convention for repeated indices is utilized.
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Finally, the coordinatesξ, η are, in general, denoted byui , wherei = 1, 2 is a dummy
index.

For the covariant component of the time derivative of the velocityv, we take its inner
product with the covariant basis vectorgi ,

gi · ∂v
∂t

∣∣∣∣
x(t),y(t)

= ∂vi

∂t

∣∣∣∣
u j

+
[
∂vi

∂u j
− vk0

k
i j

]
duj

dt
− vkgk · ∂gi

∂t

∣∣∣∣
u j

, (47)

where0k
i j represents a Christoffel symbol for the curvilinear coordinate system andgk

the contravariant basis vector. The last two terms on the right-hand side are present only
when the coordinate system exhibits a time dependence, as in the case of a moving and
deforming boundary, and are treated, as mentioned before, explicitly in the time integration
scheme exactly like the nonlinear convective terms for the velocity in the Navier–Stokes
equation. When the coordinate system does not change, such as for a stationary or uniformly
translating boundary, these last two terms drop out.

The components alongξ of the middle term in Eq. (47) are[
∂vξ

∂u j
− vk0

k
ξ j

]
duj

dt
=
[
∂vξ

∂ξ
− ∂ ln hξ

∂ξ
vξ − M

∂ ln hξ
∂η

vη

]
dξ

dt

+
[
∂vξ

∂η
− ∂ ln hξ

∂η
vξ − M

∂ ln hξ
∂ξ

vη

]
dη

dt
, (48)[

∂vη

∂u j
− vk0

k
η j

]
duj

dt
=
[
∂vη

∂ξ
− ∂ ln hξ

∂η
vξ − ∂ ln hξ

∂ξ
vη

]
dξ

dt

+
[
∂vη

∂η
+ 1

M

∂ ln hξ
∂ξ

vξ − ∂ ln hξ
∂η

vη

]
dη

dt
. (49)

For the last term in (47) we have

vkgk · ∂gξ
∂t

∣∣∣∣
η

= [vξ(gξxex+gξyey
)+vη(gηxex+gηyey

)] ·[ ∂
∂ξ

(
∂x

∂t

)
ex+ ∂

∂ξ

(
∂y

∂t

)
ey

]
(50)

and

vkgk · ∂gη
∂t

∣∣∣∣
ξ

= [vξ(gξxex + gξyey
)+ vη(gηxex + gηyey

)] · [ ∂
∂η

(
∂x

∂t

)
ex + ∂

∂η

(
∂y

∂t

)
ey

]
,

(51)

whereex andey are the Cartesian basis vectors for a two dimensional coordinate system
andgξx, g

ξ
y andgηx, g

η
y the components of the contravariant basis vectors in the Cartesian

frame.
The covariant components of the Laplacian of the velocity which enter into the equations

of motion are

(∇2v)ξ = 1

h2
ξ

∂2vξ

∂ξ2
+ 1

h2
η

∂2vξ

∂η2
− 2

M

h2
ξ

(
∂vξ

∂η
− ∂vη
∂ξ

)
∂ ln hξ
∂η
− 1

h2
ξ

vξ

(
∂2ln hξ
∂ξ2

+M
∂2ln hξ
∂η2

)
.

(52)
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and

(∇2v)η = 1

h2
ξ

∂2vη

∂ξ2
+ 1

h2
η

∂2vξ

∂η2
+ 2

h2
ξ

(
∂vξ

∂η
− ∂vη
∂ξ

)
∂ ln hξ
∂ξ

− 1

h2
ξ

vη

(
∂2 ln hξ
∂ξ2

+ M
∂2 ln hξ
∂η2

)
. (53)

The scaled value of the divergence of the Laplacian of the velocity for an incompressible
fluid, which is used in the derivation of the Poisson equation for the pressure, is taken from
the formula(

M

h2
ξ

)
∇ · ∇2v

≡ 1

M

∂

∂ξ
(∇ ·∇v)ξ + ∂

∂η
(∇ ·∇v)η

=
(

1

h2
ξ

)(
1

M

∂2ln hξ
∂ξ2

+ ∂
2ln hξ
∂η2

)[
2

(
vξ
∂ ln hξ
∂ξ
+ Mvη

∂ ln hξ
∂η

)
− vξ

M
− vη

]
. (54)

Finally, the covariant components of the rotational part of the convective terms in the
equations of motion alongξ andη are

(ω × v)ξ = 1

h2
η

(
∂vξ

∂η
− ∂vη
∂ξ

)
vη (55)

(ω × v)η = 1

h2
ξ

(
∂vη

∂ξ
− ∂vξ
∂η

)
vξ . (56)

APPENDIX B: DEFINITION OF THE RIGHT HAND SIDES OF THE DISCRETIZED

MOMENTUM AND PRESSURE EQUATIONS

[RHS(v; t = tn+1)]ξ ≡ 2

[(
∂vξ

∂η
− ∂vη
∂ξ

)
∂ ln hξ
∂η

]n+1

+
[
vξ

(
1

M

∂2 ln hξ
∂ξ2

+ ∂
2 ln hξ
∂η2

)]n+1

(57)

[RHS(v; t < tn+1)]ξ ≡
(

h2
ξ

M

)n+1[
−2Re

1t
vn − (∇2v)n

]
ξ

−Re

(
h2
ξ

M

)n+1

[(ω × v)n−1− 3(ω × v)n]ξ (58)

[RHS(v; t = tn+1)]η ≡ −
[

2

M

(
∂vξ

∂η
− ∂vη
∂ξ

)
∂ ln hξ
∂ξ

]n+1

+
[
vη

(
1

M

∂2 ln hξ
∂ξ2

+ ∂
2 ln hξ
∂η2

)]n+1

(59)

[RHS(v; t < tn+1)]η ≡
(

h2
ξ

M

)n+1[
−2Re

1t
vn − (∇2v)n

]
η

−Re

(
h2
ξ

M

)n+1

[(ω × v)n−1− 3(ω × v)n]η (60)



                   

SPECTRAL FLOW SIMULATIONS 547

RHS(p; t = tn+1) ≡ 1

2Re

(
1

h2
ξ

)n+1( 1

M

∂2 ln hξ
∂ξ2

+ ∂
2 ln hξ
∂η2

)n+1

×
[
2

(
vξ
∂ ln hξ
∂ξ
+ Mvη

∂ ln hξ
∂η

)
− vξ

M
− vη

]n+1

(61)

RHS(p; t < tn+1) ≡
(

h2
ξ

M

)n+1{1

2
∇n+1 · [(ω × v)n−1− 3(ω × v)n]

− 1

2Re
∇n+1 ·

[
−2Re

1t
vn − (∇2v)n

]}
. (62)
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